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ABSTRACT

SEARCHING FOR GRAVITATIONAL WAVES USING PULSAR TIMING ARRAYS

The University of Wisconsin–Milwaukee, August 2014

Under the Supervision of Professor Xavier Siemens

Gravitational Waves (GWs) are tiny ripples in the fabric of spacetime predicted by

Einstein’s theory of General Relativity. Pulsar timing arrays (PTAs) offer a unique op-

portunity to detect low frequency GWs in the near future. Such a detection would be

complementary to both LISA and LIGO GW efforts. In this frequency band, the expected

source of GWs are Supermassive Black Hole Binaries (SMBHBs) that will most likely form

an ensemble creating a stochastic GW background with possibly a few nearby/massive

sources that will be individually resolvable. A direct detection of GWs will open a new

window into the fields of astronomy and astrophysics by allowing us to constrain the

coalescence rate of SMBHBs, providing us with further tests on the theory of General

Relativity, and giving us access to properties of black holes not accessible by current

astronomical techniques.

This dissertation work focuses primarily on the development of several robust data

analysis pipelines for the detection and characterization of continuous GWs and a stochas-

tic GW background. The data analysis problem for PTAs is quite difficult as one must

fully take into account the timing model that must be fit in order to obtain the residu-

als, uneven sampling (including large gaps), and potential red noise processes. The data

analysis techniques presented here handle all of these effects completely while allowing

additional freedom in parameterizing the noise present in the data. The accumulation of

work from this dissertation has resulted in a fully functional, robust, and efficient data

analysis pipeline that has been successfully applied to the 5- and 9-year NANOGrav data

releases.
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Chapter 1

Introduction

“Through fire and water. From the lowest dungeon to the highest
peak, I fought him, the Balrog of Morgoth. Until at last, I threw
down my enemy and smote his ruin upon the mountainside.
Darkness took me. And I strayed out of thought and time. Stars
wheeled overhead and every day was as long as a life-age of the
earth. But it was not the end. I felt life in me again. I’ve been
sent back until my task is done.”

— Gandalf, The Lord of the Rings: The Two Towers

Einstein’s theory of general relativity is a theory of space, time and gravitation that

was completed in 1915. It constitutes the foundation of our understanding of large-scale

phenomena, from planetary motion to the evolution of the Universe itself. In general

relativity, the gravitational force is no longer a “spooky action at a distance” but is in-

stead explained as a manifestation of spacetime curvature. More precisely, the intrinsic,

observer-independent properties of spacetime are described by a spacetime metric whose

deviation from flatness (i.e., curvature) accounts for the physical effects of a gravitational

field. Furthermore, this curvature of spacetime is related to the energy and momentum

of the matter in spacetime and this relationship is embodied in Einstein’s equation. Al-

though the differences between general relativity and Newtonian physics are negligible

in laboratory physics, they are crucial for many areas of astrophysics and cosmology.

Furthermore, general relativity has made several important predictions that have been

observed and confirmed such as gravitational time dilation, gravitational lensing, and the

existence of black holes; while other predictions, such as gravitational waves, have not

yet been confirmed conclusively.
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2One of the most important predictions of general relativity is gravitational waves

(GWs) which are tiny ripples in the fabric of spacetime that have thus far eluded direct

detection. Using precise timing observations of the Hulse-Taylor double neutron star

(DNS) system, astronomers were able to prove (indirectly) that gravitational radiation

exists by measuring the orbital rate of decay due to gravitational wave emission, which was

found to be in excellent agreement with general relativity (Hulse & Taylor 1975; Taylor

& Weisberg 1982). This work was awarded the 1993 Nobel prize in physics. Recently the

bicep2 team has announced the discovery of a significant detection of GWs in the B-

mode power spectrum of Cosmic Microwave Background (CMB) (BICEP2 Collaboration

et al. 2014) lending further credence to the definite existence of GWs on very different

frequency scales (see section 1.1.1 for more details on the GW spectrum). Although both

of these experiments have given strong evidence1 for the existence of GWs and are in

very good agreement with the predictions of general relativity, they are both, to varying

degrees, indirect detections. The elusive direct detection has still yet to be made.

Over the last few decades, scientists have constructed new experiments to detect and

characterize GWs from astrophysical sources. These experiments fall into two broad

categories; interferometric detectors such as the Laser Interferometer Gravitational wave

Observatory (LIGO; Waldman 2011) and the Laser Interferometer Space Antenna (LISA;

Danzmann & Rdiger 2003), and Pulsar Timing Arrays (PTAs; Sazhin 1978; Detweiler

1979; Hellings & Downs 1983; Romani 1989; Foster & Backer 1990). The remainder of

this dissertation will focus specifically on the detection and characterization of GWs using

PTAs.

One of the most promising means of detecting GWs is through the precise timing of

an array of millisecond pulsars (MSPs). Twenty years after their conception, three main

PTAs are in full operation around the world: the North American Nanohertz Observatory

for Gravitational waves (NANOGrav; Jenet et al. 2009), the Parkes Pulsar Timing Array

(PPTA; Manchester 2008), and the European Pulsar Timing Array (EPTA; Janssen et al.

2008). The three PTAs collaborate to form the International Pulsar Timing Array (IPTA;

1At the time of writing the bicep2 results are under scrutiny and the statistical significance may not

be as large as first reported. Furthermore the results need to be confirmed by other experiments.
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3Hobbs et al. 2010) which will result in increased sensitivity to GWs through more data

and longer time-spans than any single PTA. PTAs are most sensitive to GWs with

frequencies in the nanohertz regime (i.e., 10−9 Hz – 10−7 Hz). Potential sources of GWs in

this frequency range include supermassive black hole binary systems (SMBHBs) (Sesana

et al. 2008), cosmic (super)strings (Olmez et al. 2010), inflation (Starobinsky 1979), and

a first order phase transition at the QCD scale (Caprini et al. 2010).

While several potential sources of GWs may exist in the PTA frequency band, SMB-

HBs are the most likely and most studied. In the following section we will review the basic

concepts of general relativity and then move on to the linearized theory of gravity and the

production of GWs. We will then discuss GWs from SMBHBs by deriving their general

waveform and then deriving the expected stochastic background from a superposition of

single sources.

1.1 General Relativity

In this section, we will only give a brief overview of these concepts of general relativity that

will be necessary for the derivation and understanding of GWs. For a much more formal

description of general relativity, see a standard textbook such as Wald (1984). General

relativity is a metric theory of gravity governed by Einstein’s equations which describe

the relationship between the four-dimensional manifold, representing spacetime, and the

energy-momentum contained in that spacetime. Furthermore, general relativity is based

on the notion that there are no inertial observers to measure the gravitational force as is

done in special relativity. In order to accomplish this, general relativity states that the

spacetime metric is not flat and that “background observers” simply follow geodesics of

the curved spacetime metric and coincide with what was previously viewed as free-fall

motion in a gravitational field. As a result, there is no meaningful way to describe gravity

as a force field; but instead, gravity is an aspect of spacetime structure.

We begin by introducing the notion of the spacetime metric through the spacetime
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ds2 = gαβdx
αdxβ, (1.1.1)

where gαβ is the spacetime metric and {xα} is a set of coordinates. For example, in flat

spacetime in cartesian coordinates we have

ds2 = ηαβdx
αdxβ = −(dt)2 + (dx)2 + (dy)2 + (dz)2, (1.1.2)

where ηαβ = diag{−1, 1, 1, 1} is the flat spacetime metric and t, x, y and z are time plus

the usual cartesian coordinates.3 In general, the spacetime metric can be represented as

a non-singular symmetric 4 × 4 matrix that is not necessarily diagonal. The spacetime

metric is key to all of general relativity as specified by the principle of general covariance

which states that the metric gab and quantities derivable from it are the only spacetime

quantities that can appear in the equations of physics. Next we define the geodesic

equation, which is the equation of motion for freely-falling (i.e., background) observers.

A geodesic is a curve whose tangent vector, T a satisfies the equation

T a∇aT
b = 0, (1.1.3)

where ∇a is the covariant derivative and

∇aT
b = ∂aT

b + ΓbacT
c, (1.1.4)

with Γbac the Christoffel symbol defined by

Γcab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) , (1.1.5)

and ∂a is the ordinary derivative operator4 defined as ∂α = ∂/∂xα in a coordinate basis.

Furthermore, the geodesic equation for Tα in the coordinate basis is

dTα

dt
+ ΓαβγT

βT γ = 0, (1.1.6)

2In this dissertation, we will use the Einstein index notation where repeated upper and lower indices

denotes a sum (e.g., xαyα =
∑α

xαyα). Furthermore, we use the abstract index notation where greek

indices denote the components of a tensor in some coordinate system and latin indices simply represent

the rank of the general tensor.
3We use geometerized units where G = c = 1.
4Note that the ordinary derivative obeys ∂aηbc = 0 and the covariant derivative obeys ∇agbc = 0.
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5where t is the affine parameter along the curve. Furthermore, in a coordinate basis the

tangent vector is

Tα =
dxα

dt
, (1.1.7)

and the geodesic equation becomes

d2xα

dt2
+ Γαβγ

dxβ

dt

dxγ

dt
= 0. (1.1.8)

Note that in flat space and our usual cartesian coordinate system, we recover our expres-

sion for an inertial observer (i.e., constant velocity).

The Riemann curvature tensor can be derived in many ways, none of which we will

pursue here; however, we note that the curvature is directly related to a path dependent

nature of parallel transport, i.e., the failure of a vector to return to its original value when

parallel transported in a closed loop. Most important for our discussion of gravitational

waves is the Riemann curvature tensor’s role in geodesic deviation, that is, the failure of

initially parallel geodesics to remain parallel. Let Xa be a deviation vector representing

the displacement of a set of geodesics, then va = T b∇bX
a is the rate of change of the

deviation vector and correspondingly, the relative acceleration of the deviation vector is

given by

aa = T b∇bv
a = T c∇c(T

b∇bX
a)

= −Rcbd
aXbT cT d,

(1.1.9)

where Rcbd
a is the Riemann tensor defined by

Rabc
d = ∂bΓ

d
ac − ∂aΓdbc + ΓecaΓ

d
be − ΓecbΓ

d
ae. (1.1.10)

The geodesic deviation equation above shows that initially parallel geodesics will fail to

remain parallel unless the curvature is zero. We will see in the next section how this will

allow us to detect GWs. Lastly, we move on to Einstein’s equation itself. The motivation

for the equation comes from the Newtonian tidal acceleration of two nearby particles in a

gravitational field and from Poisson’s equation relating the gravitational potential to the

energy density of matter. In general relativity continuous matter distributions and fields

are described by a stress energy tensor Tab satisfying the continuity equation ∇aTab = 0.
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6This covariant form of the stress energy tensor along with the non-relativistic motivations

leads to the Einstein equation

Gab = Rab −
1

2
Rgab = 8πTab, (1.1.11)

where Gab is the Einstein tensor, Rab = Racb
c is the Ricci tensor and R = Ra

a is the scalar

curvature. Recall that the Riemann tensor, and thus the Ricci tensor, is composed of first

and second derivatives of the spacetime metric making Einstein’s equations a coupled set

of nonlinear second order partial differential equations for the metric components gab.

However, if we are only interested in a small perturbation to the flat spacetime metric,

then we can greatly simplify this set of equations.

1.1.1 Linearized Gravity

In the case of all current space and ground based GW detectors, GWs can be treated

as a small linear perturbation to the flat spacetime metric, ηab. In this section we will

introduce the theory of linearized gravity and will introduce the notion of GWs. In the

next section we will look at GWs specifically from supermassive black hole binary systems.

We begin by writing the spacetime metric as a “small” perturbation on flat spacetime

gab = ηab + hab, (1.1.12)

where hab is our small metric perturbation. Essentially linearized gravity consists of

substituting the above metric into Einstein’s equations and keeping only terms linear in

hab. Also note that the inverse metric is

gab = ηab − hab. (1.1.13)

Furthermore, to linear order in hab the Christoffel symbol is

Γcab =
1

2
ηcd (∂ahbd + ∂bhad − ∂dhab) , (1.1.14)

and the Ricci tensor, to linear order, is

Rab = ∂cΓ
c
ab − ∂aΓccb

=
1

2
(∂c∂bhac + ∂c∂ahbc − ∂c∂chab − ∂a∂bh) ,

(1.1.15)
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7where h = ha
a is the trace of hab. Therefore, the Einstein tensor to linear order is

Gab = Rab −
1

2
ηabR

=
1

2

(
∂c∂bhac + ∂c∂ahbc − ∂c∂chab − ∂a∂bh− ηab

(
∂c∂dhcd − ∂c∂ch

))
,

(1.1.16)

which can be simplified by defining the trace reversed metric

h̄ab = hab −
1

2
ηabh. (1.1.17)

Now, the linearized Einstein equation is

−∂c∂ch̄ab + ∂c∂bh̄ac + ∂c∂ah̄bc − ηab∂c∂dh̄cd = 16πTab. (1.1.18)

Note that if the left hand side contained only the first term, then the linearized Einstein

equation would simply be a flat spacetime wave equation. We would like all terms con-

taining the divergence of the trace reversed metric to vanish (i.e., ∂bh̄ab = 0). This can

be accomplished by making an appropriate coordinate transform or gauge choice. It can

be shown that linearized gravity has gauge freedom given by

hab → hab + ∂bξa + ∂aξb, (1.1.19)

which is analogous to the electromagnetic gauge freedom that allows us to add the gradient

of a scalar field to the vector potential (i.e., Aa → Aa + ∂aφ) and still obtain the same

physics. In terms of the trace reversed metric, this gauge freedom is given by

h̄ab → h̄ab + ∂bξa + ∂aξb −
1

2
ηab∂cξ

c. (1.1.20)

Therefore, by solving

∂b∂bξa = −∂bh̄ab, (1.1.21)

for ξa, we have defined the Lorenz gauge condition

∂bh̄ab = 0 (1.1.22)

and the linearized Einstein equation reduces to

∂c∂ch̄ab = −16πTab. (1.1.23)
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81.1.2 Gravitational Waves

We now move on to the description of GWs. We have seen that the solution to the

linearized Einstein equation for perturbations on flat spacetime in the Lorenz gauge is a

wave equation with the stress-energy tensor as a source term. In vacuum, the solution to

these equations will be traveling waves. For the vacuum linearized Einstein equation we

have

∂c∂ch̄ab = 0, (1.1.24)

where we have used the Lorenz gauge to simplify things. However, there is extra gauge

freedom that will simplify matters further. By solving

∂b∂bξ
a = 0 (1.1.25)

for ξa we obtain the transverse traceless gauge that is standard in the GW literature.

While we will not show the derivation here, it is possible to use this extra gauge freedom

to specify the following conditions on the metric perturbation

ha
a = h = 0 (1.1.26)

ha0 = 0 (1.1.27)

∂jhij = 0, (1.1.28)

denoting a traceless, spatial, and transverse solution to the vacuum linearized Einstein

equation and the latin indices i and j denote only the spatial components of the tensor.

Note that the traceless condition implies h̄ab = hab. In general the metric perturbation,

hab has 10 independent components; however, this gauge choice, along with the Lorenz

condition, reduce the total number of degrees of freedom form 10 to 2. First, the spa-

tial condition removes 4 degrees of freedom. Next the traceless condition removes one

more degree of freedom and finally, the transverse condition removes a final 3 degrees of

freedom. Thus only two independent degrees of freedom remain and the spatial metric
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9perturbation (all non-spatial components are 0) can be written as5

hij =




h+ h× 0

h× −h+ 0

0 0 0


 , (1.1.29)

where the naming convention of h+ and h× are standard and will become clear momen-

tarily.

Thus far we have derived a form of the metric perturbation by specifying the

transverse-traceless gauge, but how would one go about detecting such a perturbation?

As mentioned before the physical manifestations of gravity can be measured by studying

the relative acceleration of a set of “test masses”. If these point masses are at rest in

some global inertial coordinate system in nearly flat spacetime (i.e, the tangent vector

Tα = diag{1, 0, 0, 0}) then the relative acceleration between the test masses is

d2Xα

dt2
= Rβ00

αXβ, (1.1.30)

where, again, Xα is the deviation vector. In the transverse traceless gauge to linear order

in h, we can show that

Rα00β =
1

2
ḧαβ. (1.1.31)

Since we have shown that only two components of hαβ are independent, this means that

there are only two independent components of the Riemann tensor and thus two physical

polarization states of GWs in general relativity. These two polarization states are manifest

in certain polarization patterns when a GW passes a ring of test masses as depicted in

Figure 1. As we see from the figure, the plus and cross polarization states (the names

are derived from the shape of the pattern) differ by an angle of π/4 rather than π/2 for

electromagnetic waves. This is due to the quadrupolar nature of the wave as opposed to a

dipolar nature of electromagnetic waves. Furthermore, GWs can be detected by tracking

the positions of a set of “test masses” and measuring their relative separation. This is

exactly what PTAs (and other ground and space based experiments) aim to do.

5Note that this expression applies to a GW traveling in the z-direction. This tensor can be rotated

to denote GWs traveling in any direction.
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2.2 Gravitational wave polarizations

Because of the equivalence principle, single isolated particles cannot be used to measure gravita-
tional waves: they fall freely in any gravitational field and experience no e↵ects from the passage
of the wave. Instead, one must look for inhomogeneities in the gravitational field, which are the
tidal forces carried by the waves, and which can be measured only by comparing the positions or
interactions of two or more particles.

In general relativity, gravitational radiation is represented by a second rank, symmetric trace-
free tensor. In a general coordinate system, and in an arbitrary gauge (coordinate choice), this
tensor has ten independent components. However, as in the electromagnetic case, gravitational
radiation has only two independent states of polarization in Einstein’s theory: the plus polarization
and the cross polarization (the names being derived from the shape of the equivalent force fields
that they produce). In contrast to electromagnetic waves, the angle between the two polarization
states is ⇡/4 rather than ⇡/2. This is illustrated in Figure 1, where the response of a ring of free
particles in the (x, y) plane to plus-polarized and cross-polarized gravitational waves traveling in
the z-direction is shown. The e↵ect of the waves is to cause a tidal deformation of the circular ring
into an elliptical ring with the same area. This tidal deformation caused by passing gravitational
waves is the basic principle behind the construction of gravitational wave antennas.

Figure 1: In Einstein’s theory, gravitational waves have two independent polarizations. The e↵ect on
proper separations of particles in a circular ring in the (x, y)-plane due to a plus-polarized wave traveling
in the z-direction is shown in (a) and due to a cross-polarized wave is shown in (b). The ring continuously
gets deformed into one of the ellipses and back during the first half of a gravitational wave period and gets
deformed into the other ellipse and back during the next half.

The two independent polarizations of gravitational waves are denoted h+ and h⇥. These are the
two primary time-dependent observables of a gravitational wave. The polarization of gravitational
waves from a source, such as a binary system, depends on the orientation of the dynamics inside
the source relative to the observer. Therefore, measuring the polarization provides information
about, for example, the orientation of the binary system.

2.3 Direction to a source

Gravitational wave antennas are linearly-polarized quadrupolar detectors and do not have good
directional sensitivity. As a result we cannot deduce the direction to a source using a single
antenna. One normally needs simultaneous observation using three or more detectors so that the
source can be triangulated in the sky by measuring the time di↵erences in signal arrival times
at various detectors in a network. Ground-based detectors have typical separation baselines of
L ⇠ 3 ⇥ 106 m, so that at a wavelength of � = 3 ⇥ 105 m = 1 ms (a frequency of 1 kHz) the
network has a resolution of �✓ = �/L = 0.1 rad. If the amplitude SNR is high, then one can

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-2

Figure 1 : Two independent polarization modes for GWs allowed by general relativity. The effect on a

ring of test masses in the x-y plane due to a plus-polarized (left) and cross-polarized (right) GW travelling

in the z-direction. The ring gets deformed into one of the ellipses and back during one half of the GW

period and gets deformed into the other in the other half. (Image credit: Sathyaprakash & Schutz 2009)

1.1.3 Production of Gravitational Waves

In the previous section we considered the vacuum linearized Einstein equation. In this

far-zone, the metric perturbation is radiative. Now we connect these far-field solutions

to the near field solutions where the GWs are generated. Since the non-vacuum Einstein

equation of Eq. (1.1.23) is just the flat space wave equation, the solution, in the coordinate

basis is given by the retarded Green’s function

h̄αβ(t, ~x) = 4

∫
Tαβ(t− |~x− ~x′|, ~x′)

|~x− ~x′| d3x′. (1.1.32)

We will seek a solution in the far-zone, that is, we assume that the distance from the

source to the field point r is much greater than the GW wavelength, which is much

greater than the size of the source. Therefore, the approximation can be made such that

|~x − ~x′| ' r is approximately constant over the source. We also assume slow motion of

the source such that t− |~x− ~x′| ' t− r. The metric perturbation is then

h̄αβ(t, ~x) =
4

r

∫
Tαβ(t− r, ~x′)d3x′. (1.1.33)
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11Making use of the conservation law ∂aT
ab = 0, it can be shown that the spatial compo-

nents of the trace-reverse metric perturbation is

h̄ij(t, ~x) =
2

r

∂2

∂t2

∫
x′
i
x′
j
T 00(t− r, ~x′)d3x′, (1.1.34)

where we are only interested in the spatial components because we seek an eventual

solution in the transverse traceless gauge. The quadrupolar tensor is then defined as

I ij(t) =

∫
x′
i
x′
j
T 00(t− r, ~x′)d3x′, (1.1.35)

giving us the solution

h̄ij(t, ~x) =
2

r
Ï ij(t− r). (1.1.36)

As mentioned above, we would like to give a solution in the transverse-traceless gauge.

Defining the transverse projection operator

Pij = δij − n̂in̂j, (1.1.37)

with n̂i = xi/r the unit vector in the propagation direction, the solution is

hij(t, ~x) =
2

r
Ï ij(t− r), (1.1.38)

where

Iij = PikI
klPlj −

1

2
PijPklI

kl. (1.1.39)

So in essence, GWs are produced by any object that has a quadrupole function that is a

non-linear function time (i.e, accelerating masses). Furthermore, in the following sections

we will refer to the components of the metric perturbation, hab as the GW strain and can

be thought of as the ratio of the change in length between two test masses and the total

distance between the test masses. The main source of GWs in the pulsar timing frequency

(10−9Hz–10−6Hz) band are supermassive black hole binaries and we will discuss them in

the following sections; however, we expect detectable GWs over a very large frequency

range of 10−18 Hz – 104 Hz. In Figure 2 we plot the expected gravitational wave strain

vs. GW frequency along with the expected sources in different frequency ranges. We

have also included the different detectors that will be sensitive to these GWs. At the

lowest frequencies we expect GWs due to small fluctuations in the early universe that
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The big picture of gravitational wave astronomy
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Figure 2 : Schematic spectrum of GWs and corresponding detectors along with possible sources. The

current range of operable or proposed GW detectors covers nearly the entire range of expected sources

of detectable GWs. (Image credit: Fredrick Jenet, Xavier Siemens)

were imprinted on the cosmic microwave background after inflation. At higher frequencies

∼ 10−9 Hz we expect a large population of supermassive black hole binaries with masses

∼ 109 M� that may be detectable with PTAs. In the millihertz frequency range, we

expect a large population of stellar mass compact binaries such as white dwarf binaries

and also supermassive black hole binaries with masses ∼ 106 M� potentialy detectable

with a space based GW detector such as LISA. Finally at the kilohertz scale we expect

neutron star binary mergers, neutron star black hole mergers, and black hole binary

mergers potentially detectable with LIGO. As is evident from the figure, there is a large

coordinated effort to detect and characterize GWs across the entire frequency spectrum

of which PTAs are complementary.
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131.2 Supermassive Black Hole Binaries

Supermassive black hole binaries (SMBHBs) are the most promising and most studied

sources for the detection of GWs (either from individual sources or from a stochastic

background) in the PTA frequency band. SMBHBs are ubiquitous in the low-redshift

universe and are the building blocks in currently favored theories of hierarchical structure

formation; however, their origin remains mostly unknown. It is well known, however, that

the masses of nuclear SMBHs correlate with the velocity dispersion and luminosity of the

host galaxy, an indication that the galaxies and SMBHs evolve together (Gültekin et al.

2009a). In theories of hierarchical structure formation, initial black hole seeds evolve

over cosmic time driven by accretion and mergers of massive galaxies (Sesana 2013a).

PTAs are sensitive to GWs from these sources; though, there is a large uncertainty in

the efficiency at which galactic mergers result in SMBH mergers (radiating in the PTA

frequency band). This uncertainty translates into a poorly constrained rate of SMBHB

coalescences. Another potential problem is known as the “final parsec problem” in which

the exact physical processes (if any!) that drive the evolution to merger after orbital

separations less than one parsec is not well understood. The eventual observations of a

stochastic GW background and individually resolvable sources with PTAs will provide

insights into the conversion efficiency of galactic mergers into black hole mergers and

possibly give some hints into the nature of the first black hole seeds. Furthermore, the

detection of GWs from SMBHBs will prove conclusively that nature does indeed solve

the final parsec problem.

The single SMBHB mergers that may stand out above the background can be com-

bined with electromagnetic (EM) observations to obtain further information about galaxy

mergers and galaxy formation (Tanaka & Haiman 2013). Fortunately, there are several

EM SMBH tracers such as peculiar AGN emission lines, double AGN, circumbinary disk

emission, nuclear periodicities, and tidal disruption events (Burke-Spolaor 2013), all of

which result in prominent X-ray emission events that may be detectable with X-ray tele-

scopes such as Chandra and NuStar.
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141.2.1 Continuous Gravitational Waves from SMBMBs

In the above section, we mention that the physical processes that drive SMBHBs to small

orbital separations is still somewhat unknown; however, here we assume that SMBHBs

do reach an orbital separation where the orbital evolution is dominated by GW emission.

We also note that throughout this dissertation, we only consider non-spinning black

holes in circular orbits. Spin effects are not likely to play any measurable role in the

orbital dynamics (Sesana & Vecchio 2010) and eccentric systems are possible and maybe

ubiquitous (Roedig & Sesana 2012; Ravi et al. 2012; Sesana 2013b; Ravi et al. 2014) but

will not be considered here.

Consider a SMBHB composed of black holes of masses m1 and m2 and a coordinate

system such that the orbit of the binary lies in the x–y plane. We will work in center of

mass coordinates where the orbital separation is a and the reduced mass and total mass

are µ = m1m2/(m1 + m2) and M = m1 + m2, respectively. We also consider uniform

circular motion initially and will then make the necessary corrections to include GW

emission and frequency evolution. Therefore, the orbit is given by

x(t) = a cos(ωst)

y(t) = a sin(ωst)

z(t) = 0,

(1.2.1)

where ωs is the orbital frequency of the binary in the source frame. From Eq. (1.1.35) and

choosing a reference frame where the center of mass is at the origin we have I ij = µxixj

leading to

I11 = µa2 1− cos(2ωst)

2

I22 = µa2 1 + cos(2ωst)

2

I12 = −1

2
µa2 sin(2ωst).

(1.2.2)

Taking two time derivative we are left with

Ï11 = −Ï22 = 2µa2ω2
s cos(2ωst)

Ï12 = Ï21 = 2µa2ω2
s sin(2ωst).

(1.2.3)
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15Using Kepler’s third law we can write the semi-major axis a in terms of the orbital

frequency as

a = M1/3ω−2/3
s . (1.2.4)

Introducing the chirp mass Mc = µ3/5M2/5 and substituting into Eq. (1.1.38) then we

have

h+(t) =
4M

5/3
c ω

2/3
s

r
cos(2ωstret) (1.2.5)

h×(t) =
4M

5/3
c ω

2/3
s

r
sin(2ωstret), (1.2.6)

where tret = t− r is the retarded time.

GWs will radiate power away from a SMBHB source and to compensate for this loss

of energy the orbital separation must decrease with time. Equivalently, though Kepler’s

third law, GW radiation will cause the orbital frequency to increase with time. By setting

the power radiated in GWs equal to the change of orbital energy due to increasing orbital

frequency, −dEorbit/dt, and assuming that we have quasi-circular motion (i.e., ω̇s � ω2
s)

we obtain

ω̇s =
96

5
M5/3

c ω11/3
s . (1.2.7)

We can now use this expression to analytically solve for the orbital frequency as a function

of time

∫ t

t0

dt =
5

96
M−5/3

c

∫ ωs(t)

ωs(t=t0)

dωs ω
−11/3
s

t− t0 =
5

256
M−5/3

c

(
ω
−8/3
0 − ωs(t)−8/3

)

∴ ωs(t) = ω0

(
1− 256

5
M5/3

c ω
8/3
0 (t− t0)

)−3/8

,

(1.2.8)

where t0 is some fiducial reference time and ω0 = ω(t = t0) is the initial orbital frequency.

For a circular orbit, we define the phase to be

dΦ

dt
= ωs. (1.2.9)
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16We can solve this equation similarly

∫ Φ(t)

Φ(t=t0)

dΦ =

∫ t

t=t0

dt′ωs(t
′)

Φ(t)− Φ0 =

∫ ω(t)

ω(t=t0)

dωs
ωs
ω̇s

=
5

96
M−5/3

c

∫ ωs(t)

ωs(t=t0)

dωs ω
−8/3
s

∴ Φ(t) = Φ0 +
1

32M
5/3
c

(
ω
−5/3
0 − ωs(t)−5/3

)
,

(1.2.10)

where, again, Φ0 = Φ(t = t0). In order to take this frequency evolution into account in

our above derivation of the strain amplitudes we replace ωstret with Φ(tret) and replace

the ωs in the pre-factors with ωs(t). In principle, we should also have terms that depend

on ȧ and ω̇s when taking the time derivates of the quadrupole tensor; however, since we

are working in the quasi-circular regime, we can safely ignore both terms and write

h+(t) =
4M

5/3
c ωs(t)

2/3

r
cos(2Φ(t)) (1.2.11)

h×(t) =
4M

5/3
c ωs(t)

2/3

r
sin(2Φ(t)), (1.2.12)

where we now express the result in terms of t as opposed to tret since we can absorb the

extra term in tret in to our integration constants t0 and Φ0.

Since the sources of these GWs are SMBHBs with non-negligible redshifts we must

also take cosmological effects into account when computing the induces GW strain. We

will not go through the entire derivation here but instead will summarize the changes

that need to be made to our above expressions. First, in an expanding universe there is

a time dilation associated with the time measured by an observer relative to the time at

the source

dtobs = (1 + z)dts. (1.2.13)

Therefore, the frequency measured by an observer related to the source frequency via

fobs =
fs

1 + z
. (1.2.14)

Furthermore, in an expanding universe distances can be measured in a so-called luminosity

distance

dL = (1 + z)a(t0)r, (1.2.15)
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17where a(t0) is the scale factor at the present time t0. The luminosity distance is formally

defined by

dL(z) = (1 + z)
c

H0

∫ z

0

dz′√
ΩΛ + Ωm(1 + z)3

(1.2.16)

where c is the speed of light (note that we explicitly include c here for clarity), H0

is the Hubble constant, and ΩΛ and Ωm are the dimensionless density parameters for

dark energy and matter, respectively. Finally, it is possible to show that the form of

our resulting strain amplitudes will be unchanged but with the following replacements,

r → dL, Mc →M = (1 + z)Mc, and ωs → (1 + z)ωobs giving

h+(t) =
4M5/3ω(t)2/3

dL
cos(2Φ(t)) (1.2.17)

h×(t) =
4M5/3ω(t)2/3

dL
sin(2Φ(t)), (1.2.18)

where we will hereafter refer to ω as the observed frequency.

Recall, that all of this was derived for a binary system in the x-y plane and an

observer on the z-axis. For an observer at inclination ι to the binary, we need to rotate

the quadrupole tensor by an angle ι about the x-axis and then take the transverse traceless

projection. This can be done by using the rotation operator

R =




1 0 0

0 cos ι sin ι

0 − sin ι cos ι


 (1.2.19)

and computing the matrix product RÏR−1. When this is done, we arrive at our final

expression for the plus and cross GW strain functions

h+(t) =
2M5/3ω(t)−2/3

dL
(1 + cos2 ι) cos(2Φ(t)) (1.2.20)

h×(t) =
4M5/3ω(t)−2/3

dL
cos ι sin(2Φ(t)), (1.2.21)

where ι = 0 corresponds to seeing the system “face-on” where we have circular polariza-

tion (i.e, an equal mix of plus and cross) and ι = π/2 corresponds to linear polarization

in which we only see the plus polarization mode. We have now derived the GW strain

from a single SMBHB in a circular orbit. Next we compute the characteristic strain of a

background of many such events.
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181.2.2 Stochastic Gravitational Wave Background from SMBMBs

We now will briefly derive the expected spectral shape of the stochastic GW produced by

the superposition of individual SMBHBs in circular orbits as described in the previous

section. This is important, as all of the work for this dissertation and most of the

stochastic background data analysis literature to date has used this simple framework.

For a more complete and detailed analysis of this derivation see Phinney (2001) and

Sesana et al. (2008). A stochastic background can be described in terms of the present

day GW energy density per logarithmic frequency, normalized to the critical density

Ωgw(f) =
1

ρc

dρgw(f)

d log f
, (1.2.22)

where ρc is the critical density required to close the universe, ρgw is the GW energy density

and f is the frequency of the GW in the observed frame (i.e., f = ω/π). The energy

density for a population of GW events is simply an integral over the cosmic history of the

(comoving) number density of sources, multiplied by the energy emitted by each source in

the corresponding frequency range. This can then be related to characteristic GW strain

amplitude as follows

dρgw(f)

d log f
=
π

4
f 2hc(f) =

∫ ∞

0

dz
dn

dz

1

1 + z

dEgw

d log fs

∣∣∣∣
fs=(1+z)f

, (1.2.23)

where dn/dz is the comoving number density per unit redshift, Egw is the energy output

of GWs, and again fs is the GW frequency in the source frame. This quite general result

can be applied to a population of SMBHBs emitting GW radiation far from their last

stable circular orbit. The comoving number density of sources depends on quite a few

variables so let us write

dn

dz
=

∫ ∞

0

dMc
d2n

dzdMc

, (1.2.24)

where, again Mc is the chirp mass and

d2n

dzdMc

=
d3N

dzdMcd log fs

d log fs
dts

dts
dz

dz

dVc
, (1.2.25)

where dVc is the comoving volume shell between z and z + dz. Finally, it can be shown

that the characteristic strain is

h2
c(f) =

∫ ∞

0

dz

∫ ∞

0

dMc
d3N

dzdMcd log fs
h̄2(fs), (1.2.26)
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19where h̄(fs) is the polarization-average strain spectrum of an individual SMBMB. Again,

this has the interpretation that the characteristic strain is an integral over all sources

emitting in a given frequency band multiplied by the strain of each source. It is possible

to ascertain the spectral shape for the stochastic GW background from this expression.

Recall from Eqs. (1.2.25) and (1.2.7) the the first term in the integral scales as f ×f−11/3

and from Eq. (1.2.20) that the second term scales as f 4/3. Therefore the overall scaling of

hc(f) goes like f−2/3. Furthermore, it is customary in the PTA literature to characterize

the strain amplitude by

hc(f) = A

(
f

f1yr

)−2/3

, (1.2.27)

where f1yr is the frequency corresponding to 1 yr−1 and A depends on the SMBHB pop-

ulation and merger rate. The best estimates for the amplitude factor A range from

∼ 5 × 10−16 – ∼ 2 × 10−15 (Sesana 2013b; Ravi et al. 2014) and the most constraining

published upper limits are just above this range at A ≤ 2.4 × 10−15 (Shannon et al.

2013). The above derivation and standard assumption that this power-law spectral shape

continues at large orbital separations (i.e., low frequencies) is present in nearly all data

analysis techniques. However, other effects such as gas dynamics (Kocsis & Sesana 2011)

or stellar hardening (Roedig & Sesana 2012; Ravi et al. 2014) could dominate the evolu-

tion of the SMBHBs at large orbital separations. The effect of the environment on the

evolution and subsequent GW signal is still an open and active area of research and will

not be discussed further in this dissertation.

1.3 Pulsars and Pulsar Timing

Pulsars are rapidly rotating, highly magnetized neutron stars first discovered in 1967

(Hewish et al. 1968). Since then, mainly due to our ability to time the radio pulses that

pulsars emit to extremely high precision, pulsars have been used as physical tools to study

basic physics and astrophysics and general relativity. For a review of basic astronomy and

practical pulsar tools see Lorimer & Kramer (2005); for a review of GR tests with pulsars

see Stairs (2003); and for a review of millisecond pulsars see Lorimer (2008). Since the

work presented in this dissertation is based on pulsar timing data, we will focus primarily
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begin with a short introduction to pulsars.

Pulsars are normally detected by their radio pulses that are produced by the so-called

“lighthouse effect”. As the neutron star spins, charged particles are accelerated along the

magnetic field lines. These accelerating particles emit electromagnetic radiation (most

easily detected at radio frequencies) observed as a sequence of pulses produced as the

magnetic axis crosses the line of sight of an observer. The rate of repetition of the radio

pulses is simply the spin period of the neutron star. As the pulsar rotates, the outgoing

radiation carries away rotational kinetic energy causing the pulse period to gradually

decrease over time. Therefore, the two most basic properties that one can measure when

observing a pulsar are the spin period P and the rate of spin-down Ṗ . In fact, several

fundamental properties of the pulsar can be determined from these two numbers including

the characteristic age τ ∝ P/Ṗ and the magnetic field strength B ∝
√
PṖ . Furthermore,

studying the values of P and Ṗ tells us something about the evolutionary history and

population of pulsars. Figure 3 plots the spin-down vs. the period for a nearly up-to-date

population of pulsars. This plot is the radio pulsar analog to the Hertzsprung-Russel

diagram and is commonly referred to as the P–Ṗ diagram. Pulsars in binary systems

are highlighted by green circles. It is clear from the figure that there are two distinct

populations of pulsars. The canonical pulsars (upper right) have typical spin periods

on the order of seconds, large magnetic fields, and are relatively young. Conversely, the

millisecond pulsars (MSPs) have typical spin periods on the order of milliseconds, small

magnetic fields, and are much older. We also note that the MSPs have much lower spin-

down rates, meaning that they are incredibly stable over long periods of time. As we will

see in the next section, due to their rotational stability, MSPs are the best timers and

therefore, all current PTAs are comprised entirely of MSPs.

Before moving on to pulsar timing, we briefly review the currently favored models

(see e.g., Lorimer 2008, section 2.6 and references therin) to explain the evolutionary

paths of pulsars. In Figure 4 we show a cartoon outline of possible evolutionary tracks of

pulsars. Beginning with a binary system, a neutron star is formed following the supernova

explosion of the initially more massive star. If the binary disrupts after the supernova
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As can be seen from the “P–Ṗ diagram” in Figure 3, normal and millisecond pulsars are distinct
populations. The di↵erences in P and Ṗ imply fundamentally di↵erent magnetic field strengths
and ages. Treating the pulsar as a rotating magnetic dipole, one may show [185] that the surface
magnetic field strength B / (PṖ )1/2 and the characteristic age ⌧c = P/(2Ṗ ).

Lines of constant B and ⌧c are drawn on Figure 3, from which we infer typical values of 1012 G
and 107 yr for the normal pulsars and 108 G and 109 yr for the millisecond pulsars. For the rate
of loss of kinetic energy, sometimes called the spin-down luminosity, we have Ė / Ṗ /P 3. The lines
of constant Ė shown on Figure 3 show that the most energetic objects are the very young normal
pulsars and the most rapidly spinning millisecond pulsars.

Figure 3: The P–Ṗ diagram showing the current sample of radio pulsars. Binary pulsars are
highlighted by open circles. Theoretical models [64] do not predict radio emission outside the dark
blue region. Figure provided by Michael Kramer.

2.3 Pulse profiles

Pulsars are weak radio sources. Measured intensities, usually quoted in the literature for a radio
frequency of 400 MHz, vary between 0.1 mJy and 5 Jy (1 Jy ⌘ 10�26 W m�2 Hz�1). As a result,

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2005-7

Figure 3 : P–Ṗ diagram. The binary pulsars are shown with green circles. Lines of constant characteristic

age and constant magnetic field strength are also shown. (Image credit: Lorimer 2008)

explosion, we are left with a high velocity isolated neutron star and an OB runaway star.

There is a high probability of disruption which qualitatively explains why so few canonical

pulsars have binary companions. If the binary survives the supernova it may be observable

as a radio pulsar with a massive main sequence companion. Eventually (∼ 108 yr) the

pulsar will spin down so much that the energy output is no longer sufficient to produce

significant amounts of radio emission and will end its life in the pulsar graveyard of the P–

Ṗ diagram. For binaries that remain bound with a companion that is sufficiently massive

to overflow its Roche lobe, the old spun-down pulsar can become undead by accreting

matter and angular momentum from its massive companion. These objects are known

as “recycled pulsars” and have potentially two further evolutionary tracks depending
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mildly recycled pulsar

X-rays

runaway star

young pulsar

primary

millisecond pulsar - white dwarf binary
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double neutron star binary

binary disrupts

young pulsar

secondary

binary survives

secondary evolves
(Roche Lobe overflow)

binary surviveslow-mass system

Woomph!

Woomph!high-mass system

Figure 7: Cartoon showing various evolutionary scenarios involving binary pulsars.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2005-7

Figure 4 : Various evolutionary scenarios. (Image credit: Lorimer 2008)

on whether or not the companion is high-mass or low-mass. In the high mass case, the

companion may also explode in a supernova producing a second neutron star and a double

neutron star system if the binary survives the explosion. These systems lie in between

the very rapidly rotating MSPs and the canonical pulsars, typically having periods of

tens to hundreds of milliseconds. In the low-mass case, the binary evolves and transfers

matter onto the neutron star much more slowly resulting in an MSP with periods on the

order of a few milliseconds. At the end of the evolution the binary companion sheds its

outer layers and becomes a white dwarf. These systems lie in the lower left of the P–Ṗ
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1.3.1 Pulsar Timing

In the next chapter we discuss the data analysis techniques used in pulsar timing. Here we

will briefly give an overview of the observation aspect of pulsar timing. The basic premise

of pulsar timing is to measure the pulse times-of-arrival (TOAs) and compare them with

a theoretical timing model. In practice this can be done but single pulses are generally

not timed individually. The first reason is that the pulse emission is not perfectly stable,

that is, the pulse-to-pulse variation in the pulse shape is quite large (see e.g. Cordes &

Shannon 2012, and references therein). However, averaging a series of consecutive pulses

does result in a stable average profile which can be timed with high precision. Figure

5 shows this pulse-to-pulse variation in single pulses combining to form a stable pulse

profile when summed. Another reason for using averaged pulse profiles is to increase the

SNR by reducing the radiometer noise. The uncertainty on the TOA is

σTOA '
W

SNR
, (1.3.1)

where W is the pulse width. As we see from Figure 5, the single pulses jitter within

the pulse window so that timing a single pulse would result in uncertainties σTOA ≈ W ;

however, if we use many single pulses in the average pulse profile the uncertainty scales

like σTOA ∝ 1/
√
Npulses (Lorimer & Kramer 2005). For millisecond pulsars, thousands of

pulses can be averaged in a matter of minutes resulting in stable pulse profiles. Practically,

determining the precise TOA works as follows: during observations, the pulse period is

derived from a timing model used in previous observations (or the initial search). The data

are then folded using that period (i.e., data samples with the same phase are averaged).

The folded profile is then recorded with a timestamp from the observatory atomic clock.

To obtain the precise TOA, this average profile is then cross-correlated with a template

profile, usually constructed though the addition of many bright observations. From the

cross-correlation, one can derive the phase offset between the two profiles and add that to

the timestamp to create the site-arrival-time (SAT). The SATs must then be converted

to barycentric-arrival-times (BATs) in order to operate in an inertial reference frame.

This conversion is beyond the scope of this dissertation, see Hobbs et al. (2006) and
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2 Pulsars, Observations, and Timing

The properties and demographics of pulsars, as well as pulsar search and timing techniques, are
thoroughly covered in the article by Lorimer in this series [87]. This section will present only an
overview of the topics most important to understanding the application of pulsar observations to
tests of GR.

2.1 Pulsar properties

Radio pulsars were firmly established to be neutron stars by the discovery of the pulsar in the
Crab nebula [120]; its 33-ms period was too fast for a pulsating or rotating white dwarf, leaving a
rotating neutron star as the only surviving model [108, 53]. The 1982 discovery of a 1.5-ms pulsar,
PSR B1937+21 [12], led to the realization that, in addition to the “young” Crab-like pulsars born
in recent supernovae, there exists a separate class of older “millisecond” or “recycled” pulsars,
which have been spun up to faster periods by accretion of matter and angular momentum from
an evolving companion star. (See, for example, [21] and [109] for reviews of the evolution of such
binary systems.) It is precisely these recycled pulsars that form the most valuable resource for
tests of GR.

Figure 1: Top: 100 single pulses from the 253-ms pulsar B0950+08, demonstrating pulse-to-pulse
variability in shape and intensity. Bottom: Cumulative profile for this pulsar over 5 minutes (about
1200 pulses); this approaches the reproducible standard profile. Observations taken with the Green
Bank Telescope [98]. (Stairs, unpublished.)

The exact mechanism by which a pulsar radiates the energy observed as radio pulses is still
a subject of vigorous debate. The basic picture of a misaligned magnetic dipole, with coherent

Living Reviews in Relativity (lrr-2003-5)
http://relativity.livingreviews.org

Figure 5 : Single pulses from PSR B0959+08 demonstrating the pulse-to-pulse variability. At the bottom

is plotted the averaged pulse profile from summing 1200 pulses. (Image credit: Stairs 2003)

Edwards et al. (2006) for details of this process. Finally, the BATs are subtracted from

arrival times predicted by a timing model for the pulsar to form the residuals. It is the

goal of pulsar timing to minimize these residuals by finding the best model that fits the

data, the details of which will be discussed in the next section. Current PTAs are able

to correctly predict the TOAs to nanosecond precision with stability over several years

while still attaining sub-100 nanosecond root-mean-squared (RMS) residuals for several

pulsars (van Haasteren et al. 2011; Demorest et al. 2013; Manchester et al. 2013).
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Above, we described the method for constructing pulsar timing residuals by constructing

a timing model and subtracting it from measured TOAs; however, in general, the timing

model will not include perturbations due to GWs. The idea of using pulsars to detect

low-frequency GWs was simultaneously developed by Sazhin (1978) and Detweiler (1979)

in which they compute the expected induced residuals from GWs. Here we will formally

derive the response function of PTAs to incident GWs.

The metric perturbation can be written as follows

hab(t, Ω̂) =
∑

A={+,×}
eAab(Ω̂)hA(t) = e+

ab(Ω̂)h+(t) + e×ab(Ω̂)h×(t), (1.3.2)

where Ω̂ is the unit vector pointing from the GW source to the Solar System Barycenter

(SSB), h+, h× and eAab (A = +,×) are the polarization amplitudes and polarization

basis tensors, respectively. The polarization tensors can be converted to the SSB by the

following transformation. Following Wahlquist (1987) we write

e+
ab(Ω̂) = m̂am̂b − n̂an̂b,

e×ab(Ω̂) = m̂an̂b + n̂am̂b,
(1.3.3)

where

Ω̂ = −(sin θ cosϕ)x̂− (sin θ sinϕ)ŷ − (cos θ)ẑ,

m̂ = −(sinϕ)x̂+ (cosϕ)ŷ,

n̂ = −(cos θ cosϕ)x̂− (cos θ sinϕ)ŷ + (sin θ)ẑ.

(1.3.4)

In this coordinate system, θ = π/2 − δ and ϕ = α are the polar and azimuthal angles

of the source, respectively, where δ and α are declination and right ascension in usual

equatorial coordinates, where the North Celestial Pole is in the ẑ direction and the Vernal

Equinox is in the x̂ direction. We now would like to determine the effect of a passing GW

on the redshift of the radio pulse. Let p̂ be the unit that points from the Earth to the

pulsar and Ω̂ is the unit vector that points from the GW source to earth. The redshift of

the radio signal is then

z =
δν

ν
=
νp − νe
νe

, (1.3.5)
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pulsar). Furthermore, the radio signal follows a null geodesic kα with components kα =

ν(1,−p̂). Since kα is a null vector it is parameterized by an affine parameter λ. The

geodesic equation of (1.1.6) requires

dkα

dλ
= −Γαβγk

βkγ. (1.3.6)

We see that the time component of the above equation is

dk0

dλ
=
dν

dλ
= −Γ0

βγk
βkγ. (1.3.7)

To determine the redshift, we must compute dν/dλ and integrate over the geodesic from

the pulsar to the earth. Using Eq. (1.1.5) and the fact that the metric perturbation is

purely spatial, the only relevant surviving components of the Chirstoffel symbols are

Γ0
ij =

1

2

∂hij
∂t

(1.3.8)

where the latin subscripts represent the spatial components. From the above expressions,

the quantity of interest can be written as

dν

dλ
= −ν2Γ0

ij p̂
ip̂j. (1.3.9)

If we denote ~x = xp̂ as a vector along the earth-pulsar line of sight and recall that hij

is a plane wave and thus a function of t − Ω̂ · ~x then the total derivative of the metric

perturbation with respect to λ is then

dhij(t− Ω̂ · ~x)

dλ
=
dt

dλ

∂hij
∂t

+
d(Ω̂ · ~x)

dλ

∂hij

∂(Ω̂ · ~x)
. (1.3.10)

Since kα = ν(1, p̂), then k0 = dt/dλ = ν and ki = d~x/dλ = −νp̂. Furthermore, ∂hij/∂(Ω̂ ·
~x) = −∂hij/∂t and the above derivative becomes

dhij(t− Ω̂ · ~x)

dλ
= ν(1 + Ω̂ · p̂)∂hij

∂t
. (1.3.11)

Substituting this back in to Eq. (1.3.9)

dν

dλ
= −ν

2

p̂ip̂j

1 + Ω̂ · p̂
dhij
dλ

. (1.3.12)
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−
∫ λe

λp

d log ν

dλ
dλ = log(νp/νe) =

1

2

p̂ip̂j

1 + Ω̂ · p̂

∫ λe

λp

dhij
dλ

dλ

=
1

2

∑

A

p̂i eAij(Ω̂) p̂j

1 + Ω̂ · p̂

∫ te

tp

dhA(t)

dt
dt,

(1.3.13)

and since log(νp/νe) = log(1 + z) ≈ z, the redshift of the radio pulse induced by the GW

is then

z(t,Ω) =
δν

ν
=

1

2

∑

A

p̂i eAij(Ω̂) p̂j

1 + Ω̂ · p̂
∆hA(t)

=
∑

A

FA(Ω̂)∆hA(t)

(1.3.14)

where we have used Eq. (1.3.4) to define the antenna pattern functions

F+(Ω̂) =
1

2

(m̂ · p̂)2 − (n̂ · p̂)2

1 + Ω̂ · p̂

F×(Ω̂) =
(m̂ · p̂)(n̂ · p̂)

1 + Ω̂ · p̂
,

(1.3.15)

which are geometric functions that describe a pulsar’s sensitivity to GWs as a function

of their sky location and

∆hA(t) = hA(te, ψ)− hA(tp, ψ), (1.3.16)

where te and tp = te − L(1 + Ω̂ · p̂) are the times at which the GW wavefront passes

the earth and pulsar, respectively, and L is the distance to the pulsar. Henceforth we

will drop the subscript on te and simply refer to t as the time measured on earth. ψ is

the polarization angle that comes about from a rotation by an angle ψ in the transverse

plane, similar to our previous rotation that leads to the inclination angle dependence.

With the inclusion of this final rotation angle, we have

h+(t, ψ) = h+(t) cos(2ψ)− h×(t) sin(2ψ)

h×(t, ψ) = h×(t) cos(2ψ) + h+(t) sin(2ψ),
(1.3.17)

where h+(t) and h×(t) are those defined in Eq. (1.2.20). The GW induced residuals are

defined as the integral of the redshift over time

s(t, Ω̂) =

∫ t

0

δν

ν
dt =

∑

A

FA(Ω̂)

∫ t

0

∆hA(t) dt. (1.3.18)
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ever, recall that when we derived the strain amplitude in Eq. (1.2.20) we have assumed

quasi-circular orbits stating that the orbital frequency ω is a slowly varying function of

time. Further recall that the strain amplitudes only had time dependence in the orbital

frequency and phase, then we can carry out the above integrals nearly exactly by using

the following approximation

I = A

∫ t

0

ω(t)2/3 sin[2Φ(t)]dt

' A ω(t)2/3

∫ Φ(t)

0

sin[2Φ(t)]

(
dΦ(t)

dt

)−1

dΦ

≈ −A ω(t)−1/3 cos[2Φ(t)].

(1.3.19)

Therefore, in our case, when converting from strain to residuals one only needs to make

the following substitutions in Eq. (1.2.20)

sin[2Φ(t)]→ −ω(t)−1 cos[2Φ(t)]

cos[2Φ(t)]→ ω(t)−1 sin[2Φ(t)].
(1.3.20)

With these definitions we can now write the plus and cross components of the GW induced

timing residuals

s+(t) =
M5/3

dLω(t)1/3

[
− sin[2Φ(t)](1 + cos2 ι) cos 2ψ − 2 cos[2Φ(t)] cos ι sin 2ψ

]
(1.3.21)

s×(t) =
M5/3

dLω(t)1/3

[
− sin[2Φ(t)](1 + cos2 ι) sin 2ψ + 2 cos[2Φ(t)] cos ι cos 2ψ

]
, (1.3.22)

and the total GW induced residuals are

s(t, Ω̂) =
∑

A

FA(Ω̂) [sA(t)− sA(tp)] . (1.3.23)

Make note that with the inclusion of the pulsar term, our residuals measured today

contain information about the binary system thousands of years in the past (since the

time delay is proportional to the pulsar distance which is typically on the order of 1 kpc).

This unique feature of pulsar timing can allow us to study the orbital dynamics of the

SMBHB system even if the system evolves little over our ∼ 10 year observation time.

This waveform is a function of several unknown parameters which must be mapped out

in order to detect such a signal. Furthermore, detection of a sinusoid of this type in a
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signal. To confidently detect such a GW signal we will need to be sure that the same

signal with the correct weighting given by the antenna pattern functions is present in a

large set of timing residuals from many pulsars. A large part of this dissertation work

has dealt with robust and efficient ways of completing this task.

Above, we have derived the characteristic signal that GWs from an individual SMBHB

would induce in the measured pulsar timing residuals. Now we turn to a different kind of

characteristic signal that is induced by a background of SMBHBs. Here we strive to give

a fairly complete picture of the effects of a stochastic GWB on pulsar timing residuals;

however, for a complete derivation and more details see Allen & Romano (1999) and

Anholm et al. (2009). We note the metric perturbation written in Eq. (1.3.2) can be

integrated over the sky to obtain

hab(t) =
∑

A

∫ ∞

−∞
df

∫

S2

dΩhA(f, Ω̂) ei2πf(t−Ω̂·~x) eAab(Ω̂), (1.3.24)

where S2 denotes the unit two-sphere, ~x is a vector pointing along the earth-pulsar line

of sight, and hA(f, Ω̂) are complex functions satisfying hA(−f, Ω̂) = h∗A(f, Ω̂), where ∗
denotes the complex conjugate. As we assumed above in Section 1.2.2 the stochastic

background is isotropic, unpolarized, and stationary. These assumptions imply that the

expectation value of the Fourier amplitudes satisfies

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 = δ2(Ω̂, Ω̂′)δAA′δ(f − f ′)H(f), (1.3.25)

where δ2(Ω̂, Ω̂′) denotes isotropy, δAA′ denotes unpolarized, δ(f−f ′) denotes stationarity,

and H(f) is a real, non-negative function related to the GW spectrum. Lastly, we also

assume that the stochastic background has zero mean (i.e, 〈hA(f, Ω̂)〉 = 0). Since the

stochastic background is assumed to be gaussian, the above expectation values completely

specify its statistical properties. It can be shown that the function H(f) can be written

in terms of the GW energy density of Eq. (1.2.22) as

H(f) =
3H2

0

32π3
f−3Ωgw(f). (1.3.26)

Above, we have shown the GW induced residuals are simply the induced redshift

integrated over time, which itself is an integral of the GW strain along a null geodesic
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s(f, Ω̂) =
1

2πif

(
e−2πifL(1+Ω̂·p̂) − 1

)∑

A

FA(Ω̂)hA(f, Ω̂), (1.3.27)

where the term in parendissertation comes from the ∆hA(t) term in the time domain,

denoting the difference in the strain at the pulsar and earth. Now, since the GW back-

ground is a stochastic process and does not have a deterministic signal model which we

can extract from the detector noise we must instead base our detection scheme on its

statistical properties, in particular the power spectrum and cross-power spectrum of the

residuals. The quantity of interest is then

〈sI(f, Ω̂)s∗J(f ′, Ω̂′)〉 =
1

4π2f 2
〈h∗A,I(f, Ω̂)hA′,J(f ′, Ω̂′)〉ΓIJ(f), (1.3.28)

where the subscripts I and J denote separate pulsars and
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Figure 6 : Hellings and Downs correlation coefficients, χIJ as a function of the angular separation of

pulsar pairs, ζIJ .

ΓIJ(f) =
∑

A

∫

S2

dΩ
(
e−2πifLI(1+Ω̂·p̂i) − 1

)(
e−2πifLJ (1+Ω̂·p̂J ) − 1

)
FA
I (Ω̂)FA

J (Ω̂) (1.3.29)
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frequencies and typical pulsar distances, the terms involving the pulsar distances can be

safely ignored and the resulting integral is

ΓIJ(f) =
8π

3
χIJ (1.3.30)

where

χIJ =
3

2

[
1

3
+

1− cos ζIJ
2

[
ln

(
1− cos ζIJ

2

)
− 1

6

]]
(1.3.31)

is the standard Hellings-Downs coefficient (Hellings & Downs 1983) with ζIJ the angular

separation of the I, J-th pulsar pair. These correlation coefficients plotted in Figure 6 are

the unique signature of the stochastic GW background that all data analysis pipelines

(Jenet et al. 2005; Anholm et al. 2009; van Haasteren et al. 2009a; Yardley et al. 2011)

search for. From Eqs. (1.3.25), (1.3.26), and (1.3.28) we see that the power spectrum of

the GW induced residuals is

PIJ(f) = χIJPg(f), (1.3.32)

where

Pg(f) =
1

24π2
hc(f)2 =

A2

24π2

(
f

fyr

)2α

f−3, (1.3.33)

where α = −2/3 for a SMBHB stochastic background. Thus, we have shown that the

characteristic signature of an isotropic, unpolarized, stationary, and Gaussian stochastic

GW background is fully encoded in the pulsar timing residuals via the Hellings and Downs

correlation coefficients of Eq. (1.3.31) and the GW power spectrum of Eq. (1.3.33), which

in turn is a simple function of the strain spectrum of Eq. (1.2.27).

1.4 Dissertation Summary

This dissertation is composed of a selection of papers that were published during my Ph.D

work as well as an extended introduction to the data analysis methods used in modern

PTA data analysis. Chapter 2 begins with a brief introduction to Bayes theorem and

Bayesian data analysis that is pervasive throughout this dissertation. We then discuss
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responding pulsar timing model parameters. Next we note that if one wants model other

elements in the TOAs such as gravitational waves or additional noise sources (beyond the

standard template fitting uncertainty) then we must move beyond standard pulsar timing

techniques. From this assertion we construct two forms of the pulsar timing likelihood

function that are used in all subsequent GW and noise characterization work. The first

likelihood function is derived by assuming the operation that converts pre-fit to post-fit

residuals is simply a linear transformation. The second form of the likelihood comes from

including all signals including the linear timing model, GWs, noise parameters, etc., in

a joint likelihood and then marginalizing over the timing model parameters. Next, we

discuss in detail the most general noise model that is used in modern PTA data analysis

techniques and write the likelihood in a more computationally efficient manner. Finally

we conclude this chapter by discussing Markov Chain Monte-Carlo algorithms including

specifics on how to compute the Bayesian evidence and how to construct efficient jump

proposals.

Chapter 3 is the first of three chapters discussing data analysis techniques and results

for continuous GWs. In this chapter we introduce a frequentist detection technique known

as F -statistic, which is simply a likelihood ratio maximized over several of the parameters

in the continuous GW signal. We derive a coherent and incoherent F -statistic which we

denote as the Fe and Fp, respectively. The Fe-statistic ignores the pulsar term and only

models the signal with the coherent earth term and the Fp-statistic models the total power

in the residuals from both the earth and the pulsar term. An outline for a detection and

upper limit pipeline is then discussed along with several simulations to test the efficacy

of these detection statistics.

Chapter 4 details a complete Bayesian analysis pipeline for the detection and char-

acterization of continuous GW signals in PTA data. Here we include the pulsar term

completely in our analysis and map out the entire combined parameter space of GW

parameters as well as pulsar distances via MCMC. We test this pipeline on semi-realistic

simulated IPTA data. We show that we can efficiently map out this parameter space to

perform parameter estimation and that we can also evaluate the Bayesian evidence to
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Chapter 5 uses the techniques developed in the previous chapters to provide a complete

continuous wave analysis of the 5-year NANOGrav dataset. We begin by reviewing upper

limit and detection protocols both in the Bayesian and frequentist framework and show

that a truly robust pipeline must include the noise, GW and timing model parameters

in the analysis simultaneously in order to avoid biases in parameter estimation and false

detections in model selection. We then present the results of several detection pipelines

in both Bayesian and frequentist frameworks. We show that there is no evidence for any

continuous GWs in this dataset. Next, we compute upper limits on the strain amplitude

of any continuous GW that could be present in the dataset. We do this using both

the frequentist Fp-statistic and the Bayesian method computing both sky-averaged and

sky-dependent upper limits.

In Chapter 6 we switch from continuous GW analysis to stochastic GW background

analysis. At the time of writing, full Bayesian analyses are extremely computationally

intensive and completely infeasible in some cases. This is due to the fact that one must

invert a very large covariance matrix (describing the correlations in the residuals for

all pulsars) when computing the likelihood function. Since we must include the noise

parameters simultaneously with the GW parameters in this search we must compute this

likelihood ∼ 1 million times in our MCMC in order to fully sample the posterior. In this

chapter, we introduce an approximation to the inverse covariance that only require us to

invert the covariance matrix for each single pulsar as opposed to the combined covariance

matrix for all pulsars. Since matrix inversion is an O(n3) process, the corresponding

computational speedup is proportional to the square of the number of pulsars in the

array. We carry out several tests to show that there is no significant bias in parameter

estimation when compared with the full likelihood function.

Lastly, in Chapter 7 we summarize this dissertation work and discuss its implications.

We also summarize current and future work in this field.
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Chapter 2

Data Analysis Methods for PTAs

“This is one corner... of one country, in one continent, on one
planet thats a corner of a galaxy thats a corner of a universe that
is forever growing and shrinking and creating and destroying and
never remaining the same for a single millisecond. And there is so
much, so much to see.”

— The Doctor, Doctor Who: The Power of Three

2.1 Introduction

In general, there are two main schools of thought in the interpretation of probability:

frequentist and Bayesian. In the following, we assume that we are interested in detecting

and characterizing a signal in noisy data. From a frequentist viewpoint, the data are

random while the signal parameters are fixed but unknown (i.e., we construct probability

distributions for the data, or rather some function of the data, given a set of signal param-

eters), whereas in the Bayesian framework the data are fixed and the signal parameters

are uncertain (i.e., we construct probability distributions of the signal parameters given

a dataset). In other words, the more traditional frequentist approach is interested in the

long term relative frequency of measuring the unknown signal parameters over many real-

izations of data (i.e, the experiment is repeated many times), and the Bayesian approach

is interested in our degree of belief in the signal parameters given a single realization of

data.

Furthermore, inference problems such as this can be further subdivided into two broad
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terested in determining which model of the signal is most favored by the data, and for

parameter estimation we are interested in the values of the parameters that describe a

given model. Both frequentist and Bayesian frameworks have tools to address each of

these problems. For our work we focus primarily on Bayesian methods and will defer

further discussion of frequentist methods to chapter 3.

While Bayesian parameter estimation and model selection has been commonplace in

LIGO and LISA (Cornish & Crowder 2005; van der Sluys et al. 2008, 2009; Littenberg &

Cornish 2009; Littenberg 2011; Veitch et al. 2012; the LIGO Scientific Collaboration et al.

2013), many PTA applications have been more frequentist in nature (Jenet et al. 2004,

2005; Anholm et al. 2009; Yardley et al. 2011, 2010; Babak & Sesana 2012; Ellis et al.

2012c; Petiteau et al. 2013) and only recently has the Bayesian framework been put to

use in the PTA context (van Haasteren et al. 2009b; van Haasteren & Levin 2010; Corbin

& Cornish 2010; Finn & Lommen 2010; van Haasteren & Levin 2013; Ellis et al. 2013;

Lentati et al. 2013b; Taylor et al. 2012). Here we will briefly review Bayesian inference

for clarity of notation. We then derive the likelihood function that is key to all of our

data analysis efforts. Lastly we will review the Markov Chain Monte Carlo (MCMC)

algorithm in detail as it is an essential tool for PTA data analysis.

2.2 Bayes Theorem

In the Bayesian framework, the data d are assumed to be fixed and the parameters Θ that

parameterize a hypothesis (or model) H are assumed to follow a given prior distribution.

The data are used to update our prior knowledge of the hypothesis p(Θ|H) via Bayes

theorem,

p(Θ|d,H) =
p(d|Θ,H)p(Θ|H)

p(d|H)
, (2.2.1)

where p(Θ|d,H) is the posterior probability distribution, that is, the probability that

the set of parameters Θ for hypothesis H could generate the given data d. In the above

expression p(d|Θ,H) is the likelihood function, the probability that this dataset d is drawn

from a random distribution described by hypothesis H parameterized by Θ. Lastly, the
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p(d|H) is the marginalized likelihood or evidence

p(d|H) =

∫
dΘ p(d|Θ,H)p(Θ|H). (2.2.2)

For the purposes of parameter estimation we can safely ignore the evidence in Bayes

theorem since it is just a normalization factor that does not depend on the model param-

eters Θ. However, if we want to perform model selection to claim a detection or compare

different signal models then computing the evidence is crucial. In this case we can make

use of the Bayesian odds ratio between models “A” and “B”

O =
p(d|HA)

p(d|HB)

p(HA)

p(HB)
, (2.2.3)

where the first ratio is known as the Bayes Factor, which quantifies our confidence in one

model over the other based on the data (henceforth we will denote the Bayes factor as B),

and the second ratio is the prior odds ratio for models A and B, which describes our prior

belief in both models. In this dissertation we consider only the Bayes factor, and assume

the prior odds are even. (The choice of the prior odds will determine the false-alarm rate

of a detection scheme based on the odds ratio (Vallisneri 2012)).

2.3 Pulsar Timing Data Analysis

In pulsar timing, we measure the times-of-arrival (TOAs) of radio pulses emitted from

pulsars. These TOAs contain many terms of known functional form (pulse period, spin

down, etc.) as well as several noise sources. Let the TOAs for a pulsar be given by

tobs = tdet(ξtrue) + n, (2.3.1)

where tobs is a vector of the observed TOAs, tdet(ξtrue) is a vector of the deterministic

timing model parameterized by timing model parameters ξtrue, and n is a vector of the

noise in the measurements which will be taken to be Gaussian. Assuming we have an

initial estimate of the true timing model parameters, ξest (either from information gained

when discovering the pulsar or past timing observations), then we can form the pre-fit

residuals

δtpre = tobs − tdet(ξest) = tdet(ξtrue)− tdet(ξest) + n. (2.3.2)
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ξtrue = ξest + ε, where ε is an offset parameter, then the above expression becomes

δtpre = tdet(ξest + ε)− tdet(ξest) + n

= tdet(ξest) +
∂tdet(ξest + ε)

∂ε

∣∣∣∣∣
ε=0

ε− tdet(ξest) + n+O(ε2)

≈ ∂tdet(ξest + ε)

∂ε

∣∣∣∣∣
ε=0

ε+ n

= Mε+ n,

(2.3.3)

where M is the design matrix and we have assumed that our initial estimate of the timing

model parameters is sufficiently close to the true values so that we can approximate this

as a linear system of equations in a small offset parameter vector, ε. In standard pulsar

timing analysis, it is customary to obtain the best fit ε̂ values through a weighted least

squares minimization of the pre-fit residuals. In the most general case we should be

performing a generalized least squares fit using a general covariance matrix for the noise

n; however, in most cases we have no a priori knowledge of this covariance matrix and

therefore assume that it is just diagonal with elements σ2
i , where σi is the uncertainty of

the ith TOA. Previous work (Coles et al. 2011) has used an iterative method to estimate

the covariance matrix of the residuals and apply a generalized least squares fit. Here we

will perform a slightly different yet equivalent analysis. Instead of performing a least-

squares fit and minimizing the chi-squared distribution, we will instead maximize the

likelihood function for the residuals.

For our purposes here we will assume the the noise n follows Gaussian statistics and

will defer a more detailed discussion for section 2.5. The likelihood function for Gaussian

noise is

p(n|~φ) =
1√

det(2πC)
exp

(
−1

2
nTC−1n

)
, (2.3.4)

where ~φ is a vector of parameters for a given model of n, and

C(~φ) = 〈nnT 〉 (2.3.5)

is the covariance matrix of the noise, where 〈·〉 represents the ensemble average. Using
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p(δtpre|~φ, ε) =
1√

det(2πC)
exp

(
−1

2
(δtpre −Mε)TC−1(δtpre −Mε)

)
. (2.3.6)

Notice that the term in the exponent is the exact quantity that we would minimize

in a generalized least squares analysis. Defining the following auxiliary variables, g =

MTC−1δtpre and Γ = MTC−1M , the log of the likelihood ratio becomes

log Λ = log p(δtpre|~φ, ε)− log p(δtpre|~φ, 0) = εTg − εTΓε. (2.3.7)

Maximizing the log-likelihood ratio over the timing model parameter offsets, ε, is equiv-

alent to minimizing the chi-squared; thus we obtain

0 =
∂ log Λ

∂ε
= g − Γε (2.3.8)

Solving for the maximum likelihood values, ε̂, we obtain

ε̂ = Γ−1g =
(
MTC−1M

)−1
MTC−1δtpre (2.3.9)

σε̂ =
√

diag(Γ−1) =
√

diag[(MTC−1M)−1], (2.3.10)

with σε̂ are the 1-sigma uncertainties on the maximum likelihood estimates ε̂. More

important for our purposes is the “transformation” from pre-fit to post-fit residuals. We

can form the post-fit residuals as follows

δtpost = δtpre −Mε̂ = (I −M(MTC−1M)−1MTC−1)δtpre = Rδtpre, (2.3.11)

where I is the appropriately sized identity matrix and we have defined the oblique pro-

jection operator

R = I −M
(
MTC−1M

)−1
MTC−1. (2.3.12)

Thus, we see that the entire linear fitting process is completely encapsulated in the

projection matrix R, with the caveat that in practice the full covariance matrix is replaced

by a diagonal matrix only containing the TOA uncertainties leading to sub-optimal results

if the true noise in the residuals is correlated or has additional white noise components (see

e.g., Cordes & Shannon 2010). This effectively summarizes the standard pulsar timing

procedure. However, if one wants to incorporate more complicated noise models or GWs

into the mix then we must dig a bit deeper.
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During the course of this dissertation we have adopted two similar but slightly different

techniques for incorporating more complicated effects into pulsar timing data analysis.

We now derive both methods.

2.4.1 Linear Transformation Approach

The first approach makes use of the so-called R-matrix as defined in Eq. (2.3.12) to

perform a “coordinate transformation” from pre-fit to post-fit residuals in the likelihood

function of Eq. (2.3.4) first explored in Demorest (2007) and later extended in Demorest

et al. (2013) and Ellis et al. (2013). In essence, we wish to write the likelihood function

in the post-fit basis. Let

p(δtpost|~φ)dδtpost = p(n|~φ)dn = p(n|~φ)

∣∣∣∣
∂n

∂δtpost

∣∣∣∣ , (2.4.1)

where | · | represents the determinant. We evaluate the Jacobian by assuming that R is

invertible and writing n = R−1δtpost, since δtpost = Rn. The Jacobian is then

∣∣∣∣
∂n

∂δtpost

∣∣∣∣ = |R−1| = 1

|R| =
1√
RRT

. (2.4.2)

Substituting this into Eq. (2.3.4) we obtain

p(δtpost|~φ) =
1√

det(2πRCRT )
exp

(
−1

2
(δtpost)T (R−1)TC−1(R−1)(δtpost)

)
. (2.4.3)

The product RCRT is just the covariance matrix of the residuals

Σ = 〈δtpost(δtpost)T 〉 = R〈nnT 〉RT = RCRT . (2.4.4)

Henceforth, we will drop the “pre” and “post” prefix to the residuals and simply refer to

“residuals” (i.e., in practice the “residuals” are those obtained from a converged tempo2

fit) unless stated otherwise. We can then write the likelihood function for the residual

data as

p(δt|~φ) =
1√

det(2πΣ)
exp

(
−1

2
δtTΣ−1δt

)
. (2.4.5)

This likelihood function is then a multivariate Gaussian distribution for the residuals with

covariance matrix RCRT . The inverse of Σ does not formally exist since we have removed
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40degrees of freedom by fitting out the timing model. In practice, we can make use of a

singular value decomposition to compute the determinant and pseudoinverse to evaluate

the likelihood. Viewed in this way, the likelihood function for the residuals is simply a

change of coordinates where R is a linear (but not invertible) map from n → δt = Rn.

Lastly, it is very important to note that R in this case only uses a noise covariance

matrix composed of the error bars on the TOAs, where the covariance matrix in Σ is

parameterized by ~φ.

2.4.2 Marginalization Approach

The second, and more self consistent, approach treats the fitting and signal characteriza-

tion phase simultaneously by analytically marginalizing over the pulsar timing parame-

ters, ε. In order to perform the marginalization, we first re-write the likelihood function

of Eq. (2.3.6) in terms of the maximum likelihood parameter estimates, ε̂

p(δt|~φ, ε) =
exp

(
−1

2
[δtTC−1δt− ε̂TMTC−1Mε̂]

)
√

det(2πC)

× exp

(
−1

2
(ε− ε̂)TMTC−1M(ε− ε̂)

)
.

(2.4.6)

Since the only dependence on ε is in the last expression, adopting uniform priors on ε, we

carry out the Gaussian integral analytically to obtain

I =

∫ ∞

−∞
dε exp

(
−1

2
(ε− ε̂)TMTC−1M(ε− ε̂)

)
=

√
(2π)m

det(MTC−1M)
, (2.4.7)

where m is the number of parameters in the timing model. Using this result and the

definition of ε̂ in Eq. (2.3.9) the likelihood function for the residuals marginalized over

the pulsar timing parameters is

p(δt|~φ) =
exp

(
−1

2
[δtTC−1δt− δtTC−1M(MTC−1M)−1MTC−1δt]

)
√

(2π)NTOA−m det(C) det(MTC−1M)
. (2.4.8)

In van Haasteren & Levin (2013), it was discovered that this marginalized likelihood can

be written in a more visually pleasing and computationally appealing form. We begin by

decomposing the design matrix via a singular value decomposition (SVD)

M = UDV T , (2.4.9)
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is an NTOA × m diagonal matrix with m < NTOA. The first m columns of U span the

column space of M and the last NTOA −m columns span the complement of M . Let Gc

be an NTOA × m matrix and G be an NTOA × (NTOA − m) matrix that form the total

orthogonal matrix U = [GcG] More explicitly

M =
[
Gc G

]

S 0

0 0


V T , (2.4.10)

where S is an m×m diagonal matrix composed of the eigenvalues of M . These matrices

have the following important properties

GT
c Gc = Im (2.4.11)

GTG = = INTOA−m (2.4.12)

GcG
T
c +GGT = INTOA

. (2.4.13)

Finally, it is possible to show that the marginalized likelihood function can be written as

p(δt|~φ) =
exp

(
−1

2
δtTG(GTCG)−1GT δt

)
√

(2π)NTOA−m det(GTCG)
. (2.4.14)

The marginalized likelihood written in this way has a similar interpretation to Eq. (2.4.5)

as a multivariate Gaussian distribution for data GT δt and covariance matrix GTCG.

The matrix GT is a projection operator that projects our data δt onto the null space

of M , that is, it projects the data into a subspace orthogonal to the linearized timing

model. In the timing analysis used here, dispersion measure (DM) variation and profile

frequency evolution effects are part of the timing model, and these terms are included

when constructing the G matrix. In this way we have fully taken into account the timing

model fitting procedure.

2.4.3 Adding Other Signals to the Likelihood Function

In the above, we have assumed that the TOAs only contain a deterministic timing model

and Gaussian noise, however; it is trivial to extend the likelihood functions to include any

number of other deterministic (linear or non-linear) sources. For example, one may want

to include continuous GW sources (Babak & Sesana 2012; Ellis et al. 2012c; Petiteau
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or full non-linear timing model (Lentati et al. 2013a; Vigeland & Vallisneri 2013) terms

(As opposed to the linear approximation Mε). To include these extra sources we simply

re-write the residuals as

δt = Mε+

Nsignals∑

i=1

si(~λi) + n, (2.4.15)

where si(~λi) is the functional form of a given signal described by parameters ~λi. One

can then use this expansion of δt in Eq. (2.3.6). The resulting likelihood functions (both

in the R-matrix and marginalization approaches) will be identical to Eqs. (2.4.5) and

(2.4.14) with

δt→ δt−
Nsignals∑

i=1

si(~λi). (2.4.16)

Throughout the remainder of this dissertation either the R-matrix or G-matrix likelihood

functions will be used either with or without additional deterministic signals depending

on the application. The reason for the use of two different likelihood functions is an

artifact of timing; earlier work makes use of the R-matrix, while newer work makes use

of the G-matrix approach.

2.5 Parameterized Noise Models

In section 6.2 we have derived the likelihood function used for our analysis; however, we

have not specified the form of the noise covariance matrix C, or more specifically, the form

of the noise in the residuals n. Here we will detail currently used noise models, explaining

each component along the way. Next we will compute the covariance matrix and insert

it into our likelihood function derived in Section 6.2, making use of some techniques to

increase computational efficiency.

In practice, the noise in pulsar timing residuals is non-Gaussian due to interstellar

medium scintillation effects which are manifest through a time varying pulse intensity,

resulting in time-dependent TOA uncertainties. Nonetheless, the noise in each residual

is modeled very well by a Gaussian distribution with zero mean and standard deviation

equal to the uncertainty on the TOA. In other words, the noise in the weighted (by the

individual TOA errors) residuals is very well approximated as a Gaussian distribution.
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covariance matrix.

2.5.1 White Noise Model

Naively one may think that modeling white noise in our pulsar timing residuals is quite

simple and can be accomplished simply by assuming that the only white noise present is

due to radiometer noise and is captured in the TOA uncertainty output by the template

matching procedure described above. In fact, some pulsars do seem to follow this trend

with no evidence of additional white noise beyond the standard template fitting errors;

however, in many pulsars, especially very well timed pulsars and those with long (i.e., T >

10 yr) baselines we see strong evidence for additional white noise beyond radiometer noise.

Even radiometer noise may be affected by some sort of systematic uncertainty causing the

error bars to either be under or over estimated, thus we include a free parameter that is

a multiplier on the given TOA uncertainties. This kind of effect will likely be dependent

on the given observing backend (i.e., the instrumentation used for timing) and possibly

on the observing frequency, therefore, the covariance matrix of the radiometer noise, nrad,

is given by

Crad = EW =




E1 0 · · · 0

0 E2 · · · 0

...
...

. . .
...

0 0 · · · ENback







W1 0 · · · 0

0 W2 · · · 0

...
...

. . .
...

0 0 · · · WNback



, (2.5.1)

where W = diag{σ2
i }, with σi the uncertainty on the ith TOA, and E is also an

NTOA × NTOA diagonal matrix composed of Nback sub diagonal matrices, where Nback

is the number of backend/frequency combinations for a given pulsar. Each sub-matrix

of E is simply the appropriately sized identity matrix multiplied by the square of the

unknown error scaling factor (EFAC). For example, if we observe a pulsar with backends

A and B, each at both 800 MHz and 1.4 GHz, then in general we will have four EFAC

parameters, where all uncertainties for TOAs associated with backend A at 800 MHz

will now become σi → e1σi, where e1 is the EFAC parameter for that backend/frequency

combination. Similarly, TOAs with the other three backend/frequency combinations will
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of EFAC are very nearly unity indicating that there is no systematic error in the TOA

template matching uncertainty; however, it is desirable to use several EFAC parame-

ters as described above in characterizing the noise just to be sure that one particular

backend/frequency observing setup is not biasing the noise estimates of the others. In

principle it would be possible to carry out a Bayesian model selection to determine if

the data supports separate EFAC parameters of simply only 1, however; such a study is

beyond the scope of this dissertation and will be left to future work.

The EFAC parameters above should capture any biases in the TOA uncertainties

but it is not likely to capture an additional white Gaussian noise process that affects all

TOAs in the same way. For example if the timing residuals show a large spread that is

not consistent with the TOA error bars, then there is likely an additional uncertainty that

we can model with an additional unknown parameter typically referred to as EQUAD

because it is added in quadrature to the EFAC component. The covariance matrix for

the EQUAD component is then

Cequad = QI, (2.5.2)

where, as above, Q is a block diagonal matrix composed of the the squares of the EQUAD

parameters, and I is an NTOA ×NTOA identity matrix. Note that again we separate out

the EQUAD parameters based on their backend/frequency combination, so in the above

example the effective uncertainty on a set of TOAs from the first backend/frequency

setup becomes σi →
√
e2

1σ
2
i + q2

1, where q1 is the EQUAD parameter.

As we noted in the Introduction when discussing averaged pulse profiles, individual

pulses jitter within the pulse window and can lead to further uncertainty in the TOA

measurement that is not fully captured by the template fitting error. For many observing

scenarios, the jitter noise will simply be absorbed into the EQUAD parameter discussed

above, however; in current NANOGrav datasets, the large observing bandwidth has led to

the construction of several TOAs per observing epoch in order to deal with the frequency

dependence of the profile shape (see e.g., Demorest et al. 2013, for more details). In this

case, the jitter noise of all TOAs within a given epoch are correlated and this must be

accounted for in our noise model. One may be tempted to simply perform a weighted
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we must marginalize over the timing model parameters analytically and it is unclear how

to carry out this process for epoch-averaged TOAs. Because of this, we have developed a

framework to essentially work backward from the marginal likelihood to derive a nearly

exact averaging scheme. First we re-write our noise covariance matrix for the “jitter”

parameter

CJ = UJ̃UT , (2.5.3)

where J̃ is a q× q reduced covariance matrix with q the number of epochs1 in our dataset

and U is the “exploder” matrix that maps epochs (columns) to the full set of TOAs

(rows). Again, J̃ has a similar form to both E and Q above except that each submatrix

describes the variance of the averaged residuals as opposed to the residuals themselves

and is again diagonal with constant multiplier j2
i where ji is the jitter parameter for

a given backend/frequency combination. In other words, this matrix is identical to the

EQUAD covariance matrix for the averaged residuals. The U -matrix essentially turns this

reduced covariance matrix into the full covariance matrix by correlating (i.e, adding non-

zero off-diagonal elements to the covariance matrix) all TOAs within a given observing

epoch. Finally, we note that this term will indeed capture true pulse phase jitter as

described in Cordes & Shannon (2010) but it could also capture other effects such as

polarization calibration, short timescale ISM effects, or red noise processes with shallow

spectral indices.

2.5.2 Red Noise Model

Red noise, also referred to as timing noise is a time-correlated noise process with en-

semble average power spectra that has greater power at lower fluctuation frequencies. In

pulsar timing, the appearance of red noise could be due to a variety of effects including

intrinsic pulsar instabilities which are manifest through random walks in the spin proper-

ties (Shannon & Cordes 2010), mode switching where the spin-down “switches” between

two distinct values of Ṗ (Lyne et al. 2010), or time-varying dispersion measure (DM)

1Here we have defined an epoch to equal to the integration time as jitter will only cause correlations

between TOAs created from the same folded profile.
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46variations2 (Demorest et al. 2013; Keith et al. 2013). While a single realization of any

of these red noise processes is likely to be non-stationary, the ensemble average behavior

can be described as wide-sense stationary and obeying Gaussian statistics. If this is the

case, then the ensemble average properties are completely contained in the power spec-

trum and in turn, the covariance matrix via the Wiener-Khinchin relation which states

that the covariance matrix is the real part of the inverse Fourier transform of the power

spectrum

[Cred]ij =

∫ ∞

−∞
df cos(2πfτij)Pred(f), (2.5.4)

where τij = |ti− tj|, where t are the TOAs, and Pred(f) is the power spectrum of the red

noise process. If we assume that the power spectrum is a simple power law of the form

Pred(f) = Af−γ, (2.5.5)

with A the amplitude and γ the spectral index, then the covariance matrix can be found

analytically

Cred
n = 2

∫ ∞

fL

df cos(2πfτij)Af−γ

= 2
A
fγ−1
L

[
Γ(1− γ) sin(πγ/2)(2πfLτij)

γ−1

−
∞∑

k=0

(−1)k
(2πfLτij)

2k

(2k)! (2k + 1− γ)

]
,

(2.5.6)

where Γ(x) is the gamma function and fL is the low frequency cutoff. Physically, the low

frequency cutoff is related to the Earth-pulsar light travel time but in practice, due to

the timing model fit of the quadratic spin-down, we have no sensitivity to the cutoff as

long as fL < 1/T where T is the length of the dataset and γ ∈ [1, 7] (van Haasteren &

Levin 2013). In computing the likelihood function we must invert the covariance matrix

C which in general will be a dense matrix. With current datasets containing up to 20,000

TOAs, dense matrix inversions are computationally prohibitive. Furthermore, while an

analytic expression can be found for a power-law spectrum, this is not the case for more

complicated spectral models. For these reasons, we have chosen to adopt the formalism

2In general, DM variations are chromatic in that they effect different observing frequencies differently,

however; if residuals are single-frequency measurements then DM variations and achromatic red noise

processes become indistinguishable.
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47of Lentati et al. (2013b) who showed that is possible to expand the red noise realization

in a Fourier series

nred =

Nred
mode∑

j=1

[
aj sin

(
2πjt

T

)
+ bj cos

(
2πjt

T

)]
= Fredared, (2.5.7)

where ared is a vector of the alternating sine and cosine amplitudes, T is the total time

span of the data, and Fred is a NTOA × 2N red
mode matrix with alternating sine and cosine

terms with Nmode the number of frequencies used. Assuming that the underlying ensemble

average red noise process is wide-sense stationary and can be completely described by a

power-spectrum, then, by orthogonality, the Fourier coefficients ared will obey

ϕred,ij = 〈areda
T
red〉ij = diag({ϕred,i}), (2.5.8)

where the elements of ϕred, denoted {ϕred,i} are the coefficients of the theoretical power

spectrum of the red noise process in the residuals. The above equation states that the

Fourier modes are orthogonal, but this does not mean that they are assumed to be

orthogonal in the time domain where they are sampled and this non-orthogonality is

taken into account in the Fourier design matrices. In Bayesian terms, the above equation

represents our prior knowledge of the power spectrum by stating that we do not know

the form that the power spectrum will take but we do know that the underlying Fourier

modes are orthogonal. In this framework, the red noise covariance matrix is then

Cred = 〈nredn
T
red〉 = Fred〈areda

T
red〉F T

red = FredϕredF
T
red. (2.5.9)

Note that by using this formalism we can parameterize the power spectrum in any way

that is desired or we can simply allow the power spectrum coefficients to be free param-

eters themselves, making this method extremely robust and powerful.

2.5.3 Time Varying DM Model

Time varying DM variations can be treated in a very similar manner as achromatic red

noise but we can take advantage of multi-frequency observations to isolate the effects

of DM. This observing frequency dependence scales as ν−2 where ν is the observing



www.manaraa.com

48frequency. We can now decompose the time varying DM signal into “Fourier” like com-

ponents via

nDM =

NDM
mode∑

j=1

[
aDM,j sin

(
2πjt

T

)
D + bDM,j cos

(
2πjt

T

)
D

]
= FDMaDM , (2.5.10)

where D is a length NTOA vector with components

Di =
1

Kν2
i

, (2.5.11)

with K = 2.41× 10−16 Hz2 cm−3 pc s−1. Similar to the red noise case, aDM is a vector of

the alternating sine and cosine amplitudes for the DM signal and F is a NTOA × 2NDM
mode

matrix with alternating sine and cosine terms with a weighting given by D. So essentially

we have decomposed the time-varying DM signal into a observing frequency dependent

Fourier-like basis. As with the red noise, we can construct the covariance matrix for the

DM variations as

CDM = 〈nDMn
T
DM〉 = FDM〈aDMaTDM〉F T

DM = FDMϕDMF
T
DM , (2.5.12)

where again ϕDM are the coefficients of the theoretical power spectrum of the DM vari-

ations present in the residuals. Note that we also have the same freedom here to choose

any mode for the DM power spectrum or allow the power spectrum coefficients to vary

freely. One caveat to this way of parameterizing the DM variations is that we have no

a-priori way of knowing what to choose as the lowest frequency in the Fourier-like expan-

sion, in contrast to the red noise case where we are safe in choosing the lowest frequency

to be 1/T since the quadratic spin-down subtraction in the timing model fit will absorb

any frequencies lower than 1/T . A natural way to ameliorate this problem is to include

a quadratic fit in DM directly into the timing model. This model is then

QDM(ti) = δ0Di + δ1tiDi + δ2t
2
iDi, (2.5.13)

where δ0, δ1, and δ2 are free parameters in the model.

2.6 Modified Likelihood Function

We now will use the covariance matrices discussed above to derive a computationally

efficient method of evaluating the likelihood function. Again, much of the following dis-

cussion will follow Lentati et al. (2013b). There are several ways of deriving the likelihood
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deterministic signal and choose a prior that makes use of the theoretical power spectrum.

Thus, our timing residuals can be written as

δt = Mε+ nwhite + nred + nDM, (2.6.1)

and the likelihood function is then

p(δt|~φ, ared, aDM) =
exp

(
−1

2
(δt− Fredared − FDMaDM)T Ñ−1(δt− Fredared − FDMaDM)

)

√
(2π)NTOA−m det(GTNG)

,

(2.6.2)

where N = Crad + Cequad and Ñ−1 = G(GTNG)−1GT and ~φ is a vector of all EFAC

and EQUAD parameters. Here we will not include the “jitter” term as that is a simple

extension to this likelihood and will be discussed next. We can further simplify this

expression by combining the red and DM terms. Defining F = [Fred FDM] and a =

[ared aDM], where the square brackets denote concatenation. Now F is now a NTOA ×
(N red

mode + NDM
mode) matrix and a is a length N red

mode + NDM
mode vector. The parameters a can

be though of as hyper-parameters, and assuming their ensemble average properties are

described by the theoretical power spectrum coefficients

ϕ =


ϕred 0

0 ϕDM


 , (2.6.3)

then the corresponding hyper-prior is

p(a|ϕ) =
exp

(
−1

2
aTϕ−1a

)
√

detϕ
. (2.6.4)

The desired posterior is then

p(~φ, ϕ, a|δt) = p(δt|~φ, a)p(a|ϕ)p(ϕ)p(~φ), (2.6.5)

where p(ϕ) and p(~φ) are the prior probability distributions of the components of ϕ and

~φ, respectively. In some cases it may be interesting to fully map out this posterior;

however, in this case we are more interested in the underlying power spectrum than

in the Fourier coefficients themselves, thus we seek to numerically marginalize over the

Fourier coefficients a. Inspecting the likelihood in Eq. (2.6.2) we see that it is nearly
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except that we have the additional Gaussian hyper-prior on a as opposed to the flat prior

for ε. Nonetheless, the likelihood ratio in this case is

ln Λ = dTa− 1

2
aTΣa, (2.6.6)

where d = F T Ñ−1δt and Σ = (F T Ñ−1F + ϕ−1). This likelihood ratio is in exactly the

same form as Eq. (2.4.14). Thus, the maximum likelihood estimator and uncertainty for

the Fourier coefficients is

â = Σ−1dT (2.6.7)

σâ =
√

diag(Σ−1). (2.6.8)

The marginalized likelihood function is then

p(δt|~φ, ϕ) =

∫ ∞

−∞
da p(δt|~φ, a)p(a|ϕ)

=
exp

[
−1

2

(
δtT Ñ−1δt− dTΣ−1d

)]

√
(2π)NTOA−m det(ϕ) det(GTNG) det(Σ)

.

(2.6.9)

Thus, we have shown that by explicitly including the Fourier coefficients as part of a

deterministic signal model and then analytically marginalizing over them, then we obtain

this relatively simple form of the likelihood that is a function of the EFAC and EQUAD

parameters, ~φ, and the power spectrum (both for red and DM noise) coefficients ϕi. It

is possible, however to arrive at an identical expression by only including the ensemble

average properties of the Fourier coefficients, that is, the total covariance matrix is then

C = N + FϕF T . (2.6.10)

We can then make use of the Woodbury lemma3 to compute the inverse and determinant

of C

G(GTCG)−1GT = Ñ−1 − Ñ−1F
(
F T Ñ−1F + ϕ−1

)−1

F T Ñ−1 (2.6.11)

det(GTCG) = det(GTNG) det(ϕ) det((F T Ñ−1F + ϕ−1)). (2.6.12)

Plugging this into Eq. (2.4.14) we obtain and identical expression to Eq. (2.6.9).

3(A+DBET )−1 = A−1−A−1D(B−1+ETA−1D)−1ETA−1 and |A+DBET | = |A||B||B−1+ETA−1D|
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that it is quite trivial to include this term. Again, we write the full covariance matrix

C = N + UJ̃UT + FϕF T ' N + U(J̃ + F̃ϕF̃ T )UT = N + UC̃UT , (2.6.13)

where F̃ is identical to the F -matrix except that the time argument is not the averaged

TOAs. Thus the F̃ -matrix is a q × Nmode matrix. Essentially the above expression

is assuming that the red noise process does not vary over the timescale of one epoch,

which is typically a few hours. This approximation is very good since any red process

that has timescales that short will be completely covariant with white noise due to our

sparse sampling. The likelihood function takes the same form but with the following

substitutions

d→ UT Ñ−1δt (2.6.14)

Σ→
(
C̃−1 + UT Ñ−1U

)
(2.6.15)

det(ϕ)→ det(C̃), (2.6.16)

and ~φ now includes the jitter parameters as well.

2.7 Markov Chain Monte Carlo Methods

In this section we review the concept of MCMC. The appeal of MCMCs in general is

that they sample directly from the posterior distribution and can efficiently explore the

parameter space. The algorithm begins by specifying a point in some multidimensional

parameter space ~x. This point can be chosen at random from the prior or can be initialized

in some other way if we have additional information about the posterior structure. From

here, we propose a “jump” to a new point in parameter space, ~y via a jump proposal

distribution function q(~y|~x). We then evaluate the posterior at this new point and accept

the jump with probability α = min(1, H) where H is the Hastings ratio

H~x→~y =
p(~y|d)q(~x|~y)

p(~x|d)q(~y|~x)
. (2.7.1)

We repeat this process for many iterations until a convergence criteria is reached (i.e.,

autocorrelation length or Gelman Rubin R statistic (Gelman & Rubin 1992)) and the
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values in the chain. The choice of proposal distribution will be very important to achieve

rapid convergence and we will explore this problem in following sections.

2.7.1 Parallel Tempering and Evidence Evaluation

A major problem with generic MCMC samplers is the tendency to get trapped in a local

maxima. For a standard search it is unlikely that we will know a priori where the global

maxima are located in parameter space, thus we must start our chain from a random point

in the prior space. We want our algorithm to then quickly locate the global maxima in the

parameter space. To accomplish this in a way that satisfies detailed balance we make use

of parallel tempering. This technique involves different chains exploring the parameter

space simultaneously, each with a different target distribution

p(Θ|d, β) = p(Θ)p(d|Θ)β, (2.7.2)

where β ≤ 1 is the inverse ”temperature” and again, Θ are our unknown model param-

eters. This will essentially flatten out the likelihood surface allowing the chains to more

freely explore the entire prior volume. The ”hot” chains will inform the ”colder” chains

and vice versa by proposing parameter swaps between different temperatures. A parame-

ter swap between the ith and jth temperature is accepted with probability α = min(1, H),

where the multi-temperature Hastings ratio is

Hi→j =
p(d|Θi, βj)p(d|Θj, βi)

p(d|Θi, βi)p(d|Θj, βj)
. (2.7.3)

By swapping parameter states between different temperatures this ensures rapid location

of the global maxima. While the swapping schedule varies in our analyses, depending on

the number of unknown parameters, typically we perform swaps only between adjacent

temperature chains every ∼1000 iterations. The true posterior samples will come from the

β = 1 chain but the higher temperature chains can be used to evaluate the evidence via

thermodynamic integration (see e.g. Littenberg & Cornish 2009, and references therein).

Consider the evidence for a chain with temperature 1/β as part of a partition function

Z(β) =

∫
dΘ p(d|Θ,H, β)p(Θ|H)

=

∫
dΘ p(d|Θ,H)βp(Θ|H).

(2.7.4)
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∂ logZ(β)

∂β
=

1

Z(β)

∫
dΘ

∂p(d|Θ,H)β

∂β
p(Θ|H)

=

∫
dΘ

1

p(d|Θ,H)β
∂p(d|Θ,H)β

∂β

p(d|Θ,H)βp(Θ|H)

Z(β)

=

∫
dΘ

∂ log p(d|Θ,H)β

∂β
p(Θ|d,H)β

=

∫
dΘ log p(d|Θ,H)p(Θ|d,H)β

≡ 〈log p(d|Θ,H)〉β,

(2.7.5)

where we have used Bayes theorem in the third line and 〈log p(d|Θ,H)〉β is the expectation

value of the likelihood for the chain with temperature 1/β. Finally, integrating this

expression we obtain the logarithm of the evidence for model H

log p(d|H) =

∫ 1

0

dβ
∂ logZ(β)

∂β
=

∫ 1

0

dβ〈log p(d|Θ,H)〉β. (2.7.6)

In practice, it is important to choose a temperature ladder such that we explore the

entire likelihood surface and recover the full integrand of Eq. 2.7.6. Here we will closely

follow Littenberg & Cornish (2010) in the construction of our temperature ladder and

diagnostic techniques. In constructing a temperature ladder to be used with thermo-

dynamic integration it is important to understand that there are two regimes that we

are interested in (at least in the GW detection problem). The first regime is the range

of temperatures in which the (tempered) likelihood is still in “contact” with the GW,

that is, the data still inform on the GW parameters. Since this is where the bulk of the

integrand is concentrated when a signal is present it is very important that we choose

a fine temperature spacing here to resolve the point at which the likelihood loses con-

tact with the GW. To do this we choose a geometrically spaced temperature ladder with

temperature spacing

∆T = 1 +

√
2

ndim

, (2.7.7)

where ndim is the number of dimensions in our search. Now that a temperature spacing

is defined we must choose a maximum temperature Tmax for this regime. This choice is

based on the expected maximum SNR of a GW signal in the data. Since ρ ∝
√

ln p(d|Θ),

the effective SNR for a chain at temperature T is ρeff ∝ ρ/
√
T , therefore, for a chosen
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Tmax =

(
ρmax

ρeff,max

)2

, (2.7.8)

where ρeff,max is the SNR at which we lose contact with the GW signal. The values of

ρmax and ρeff,max are very problem dependent and are usually chosen based on simulations

and trial and error.
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Figure 7 : Mean log-likelihood vs. β for GW plus noise (blue) and noise (green) models. Here we see that

we have indeed explored a sufficient range of temperatures based on the fact that both curves become

constant at small β.

If we were only interested in parameter estimation then we would cut off the temper-

ature ladder here; however, for evidence evaluation we must explore the full parameter

space. This is the second temperature regime of evidence evaluation via thermodynamic

integration. Here, we must choose an overall maximum temperature such that we are

effectively sampling from the prior. In other words, the temperature must be sufficiently

high such that the average log-likelihood has become constant with respect to increasing

temperature. In this regime we choose a more coarse temperature spacing with ∆T ∼ 1.5

and geometric spacing. As noted in Littenberg & Cornish (2010) a good diagnostic to

ensure that we are using a high enough temperature is to plot the mean log-likelihood

for each temperature chain vs. β.
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plus noise (blue) and noise (red) models. First we notice that at low temperatures (high

β) the GW plus noise model fits the data better based on the higher likelihood values

(the data has an SNR 10 GW injection) but that it has slightly lower values at high

temperature (low β) because of the expanded prior volume due to the GW parameter

space. Since the Bayesian evidence is the area under these curves the question that is

being answered by computing a Bayes factor is “Does the fact that the GW plus noise

model fits the data better (low temperature regime) overcome the fact that that model

has a larger prior volume (high temperature regime)?”. Because of this it is crucial that

we include temperatures high enough so that the average log likelihood becomes constant,

indicating that we are sampling the prior distribution.

2.7.2 Jump Proposals

In order to facilitate good mixing of the MCMC chains, especially in large parameter

spaces, it is very important to have good jump proposals. In our implementation of the

PTMCMC algorithm we use a jump proposal that is composed of a randomized cycle of

sub-proposals. Here we will briefly outline the different jump proposals used in the cycle.

Correlated Jumps

An important and useful correlated jump proposal is built on the adaptive metropolis

(AM) algorithm Haario et al. (2001)(hereafter HST01). This method makes use of an

adaptive scheme where the gaussian proposal distribution is updated using the past

history of the chain. By using the full past history of the chain this algorithm is indeed

non-Markovian but it is shown in HST01 that it retains the correct ergodic properties and

thus will give unbiased samples from the posterior probability distribution. The algorithm

is actually quite simple. First we use a multidimensional proposal distribution with

diagonal covariance matrix C0, where the initial jump sizes are relatively unimportant

but should be chosen small enough that we have a large initial acceptance rate and thus

we will begin to build up points for later adaptation. After some number of iterations, η,
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Cn =





C0 n ≤ η

sdCov(Θ0, . . . ,Θn−1) n > η,

(2.7.9)

where sd is a parameter that depends on the dimension of the problem and

Cov(Θ0, . . . ,Θn−1) is the sample covariance matrix at the nth iteration of the algorithm.

HST01 suggest a value of sd = 2.42/ndim, where ndim is the dimension of the problem,

however we have found that we need to use a smaller value to obtain optimal acceptance

ratios around 25% (Gelman et al. 1996), however; we will occasionally make small jumps

(scale by 0.01) or large jumps (scale by 10). As shown in the above equation, we do not

perform the adaptation at every iteration of the chain but instead update the covariance

matrix every η iterations, which helps shorten the runtime of the algorithm. This adap-

tive method will help speed convergence as the jump proposal will begin to mimic the

posterior and take into account any parameter correlations. This jump is used in ∼ 20%

of our total jump cycle.

In large parameter spaces, as we encounter when modeling the GW and noise pa-

rameters simultaneously, the above method can result in very low acceptance and thus,

slow convergence. Haario et al. (2005) introduce the Single Componentwise Adaptive

Metropolis (SCAM) algorithm in which only one uncorrelated variable is updated in the

jump proposal. If the variables are completely uncorrelated, then this method is identical

to using the AM algorithm but only updating one parameter. However, if the parameters

are correlated, we can define a set of uncorrelated parameters

y = UTx, (2.7.10)

where x is our original vector of parameters and U is defined by the eigenvalue decom-

position Cn = USUT , where U is a unitary matrix and S is diagonal. It is then easy to

see that the covariance matrix of y, averaged over many steps in the chain is

〈yyT 〉 = UT 〈xxT 〉U = UTUSUTU = S. (2.7.11)

Since S = diag{σ2
s} is a diagonal matrix, each y represents an uncorrelated parameter.

Therefore, we choose an uncorrelated parameter at random and propose the jump

yji+1 = yji + 2.4N (0, σjs), (2.7.12)
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s , i is the iteration num-

ber, and j is the parameter number. We can then relate the jump in the uncorrelated

parameters back to a jump in the correlated parameters

xi+1 = Uyi+1. (2.7.13)

If U is not the identity matrix (i.e., the parameters, x, are correlated) then this means

that we will jump in combinations of correlated physical parameters even though we only

jump in one uncorrelated component at a time. We have found that jumps of this kind

greatly improve mixing when running with a large number of search parameters (e.g.

>100). This jump is used in ∼ 40% of our total jump cycle.

We also employ a third type of correlated jump proposal known as differential evo-

lution (DE) (Braak 2006). Differential evolution is a simple genetic algorithm that also

makes use of the previous history of samples in the chain. A differential evolution jump

can be constructed as follows. First choose, at random, two previous iterations of the

chain. Denote the parameter vector at those two new points as xm and xn. The DE jump

is then

xi+1 = xi + sDE(xm − xn), (2.7.14)

where sDE is a scale factor which we choose to be sDE = 2.42/ndim and sDE = 1, each

with 50% probability. The first scale factor here is identical to that used in the AM

jumps and the second is known as a “mode jump”, that is, if xm and xn are located at

two different modes of the posterior distribution, then the mode jump will result in a

jump that stays on the same mode as xi or jumps to the other mode. For this reason,

DE jumps are usually employed if there are strong mulimodal structures in the posterior

pdf. Also, since we are drawing points from the posterior, then these jumps will also

“learn” about any correlations among parameters and will be taken into account in the

jump proposal. This jump is used in ∼ 20% of our total jump cycle.

Uncorrelated Jumps

Although we use mostly correlated jump proposals, about 15% of our jumps consist of

uncorrelated jumps. In many cases, these uncorrelated jump proposals are simple draws
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Since all pulsars will have a strong white noise component and likely a weak red noise

component and likely no visible GW signal, we draw from the white noise, red noise and

GW prior distributions separately with different weights. Red noise and GW (including

the pulsar distance for continuous wave searches) prior draws account for ∼ 12% of our

total jump cycle. Finally, we also occasionally make white noise and full parameter space

prior draws, which account for ∼ 3% of our total jump cycle. Although this is quite a

large percentage of jumps that draw from the prior it greatly improves mixing in our case

when we have many search parameters with broad posterior distributions.
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Chapter 3

Frequentist Detection Statistics for

Continuous GWs

“Seize the time... Live now! Make now always
the most precious time. Now will never come
again.”

— Captain Picard, Star Trek The Next
Generation: The Inner Light

This chapter is based on:
Optimal Strategies for Continuous Gravitational Wave Detection in Pulsar Timing Arrays
J. A. Ellis, X. Siemens, J. D. E. Creighton
ApJ (2012), 765, 175

3.1 Introduction

In the next few years pulsar timing arrays (PTAs) are expected to detect gravitational

waves (GWs) in the frequency range 10−9 Hz–10−7 Hz. Prior to the establishment of

PTAs, Jenet et al. (2004) used existing pulsar data to rule out the proposed SMBHB

system 3C66B, a possible source of continuous GWs (the estimated mass of the proposed

system has since been been lowered significantly (Iguchi et al. 2010) so that it is not

likely to be detectable with current PTAs). In this work, the authors looked for the

signature of a continuous GW in real pulsar data through the use of Lomb-Scargle peri-

odograms and suggested a method for directed searches of known sources. Yardley et al.

(2010) also relied on the Lomb-Scargle periodogram to determine the sensitivity of the

PPTA to continuous GW sources as a function of GW frequency. van Haasteren & Levin
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however, the authors mention that the methods presented could be used for continuous

GW sources as well. Sesana & Vecchio (2010) use an Earth-term only signal model to

perform a study of SMBHB parameters measurable with PTAs using a Fisher matrix ap-

proach. Corbin & Cornish (2010) have developed a Bayesian Markov Chain Monte-Carlo

(MCMC) data analysis algorithm for parameter estimation of a SMBHB system in which

the pulsar term is taken into account in the detection scheme, thereby increasing the

SNR and improving the accuracy of the GW source location on the sky. Recently, Lee

et al. (2011) have developed parameter estimation techniques based on vector Ziv-Zakai

bounds incorporating the pulsar term and have placed limits on the minimum detectable

amplitude of a continuous GW source. In this work, the authors also propose a method

of combining timing parallax measurements with single-source GW detections to improve

pulsar distance measurements.

In the context of LIGO searches for continuous gravitational waves from spinning

neutron stars, Jaranowski et al. (1998) developed the so-called F -statistic, the logarithm

of the likelihood ratio maximized over some of the signal parameters. Cutler & Schutz

(2005) later generalized the F -statistic to multi-detector networks. Very recently, Babak

& Sesana (2012) have used the F -statistic to show that in PTA data multiple SMBHB

sources can be resolved in the sky. In this paper we build on this work, and improve on

a number of aspects of prior continuous wave search methods developed for PTA data

analysis.

In Section 3.2 we review the signal model. In Section 3.3 we discuss the F -statistic in

the context of PTA data. Unlike LIGO implementations of the F -statistic, our algorithm

is implemented fully in the time domain. This naturally deals with the irregular sam-

pling of PTA data and avoids the spectral leakage problems that arise when frequency

domain methods are used on such data. We also account for the timing model: fitting

out pulsar parameters removes signal power at low frequencies, at frequencies near 1 yr−1

and 0.5 yr−1 due to sky location, proper motion, and parallax fitting, and for pulsars in

binaries, at frequencies near the binary orbital frequency. Our approach also naturally in-

corporates colored noise sources, both uncorrelated and correlated (for the case when the
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an incoherent detection statistic that maximizes over all pulsar dependent contributions

to the likelihood. To test the effectiveness and sensitivity of our detection statistics, in

Section 3.4 we perform a number of Monte-Carlo simulations. We produce sensitivity

curves for PTAs of various configurations, and show that the performance of the inco-

herent statistic is comparable to the coherent F -statistic. We also present an outline

of the implementation of a continuous wave search pipeline. Finally, in Section 3.5 we

summarize our results and conclude with a derivation of the likelihood maximized over

the gravitational wave phases at the pulsar locations, which results in a vast reduction

of the search parameter space. We leave the exploration of this new statistic for future

work.

3.2 The Signal Model

As was discussed in Chapter 1 we write our GW induced pulsar timing residuals in the

following form:

s(t, Ω̂) = F+(Ω̂)∆s+(t) + F×(Ω̂)∆s×(t), (3.2.1)

where

∆sA(t) = sA(tp)− sA(te), (3.2.2)

and te and tp are the times at which the GW passes the Earth1 and pulsar, respectively,

and the index A ∈ {+,×} labels polarizations. The functions FA(Ω̂) are the antenna

pattern functions defined in Eq. (1.3.15). Also, recall that the GW contribution to the

1Technically, this is the time that the GW passes the SSB, however, following convention we will

label this as the Earth time and will later refer to the Earth-term, keeping in mind that, in practice, all

variables are referenced to the SSB.
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s+(t) =
M5/3

dLω(t)1/3

[
− sin[2Φ(t)](1 + cos2 ι) cos 2ψ

− 2 cos[2Φ(t)] cos ι sin 2ψ
] (3.2.3)

s×(t) =
M5/3

dLω(t)1/3

[
− sin[2Φ(t)](1 + cos2 ι) sin 2ψ

+ 2 cos[2Φ(t)] cos ι cos 2ψ
]
,

(3.2.4)

where ψ is the GW polarization angle and ι is the inclination angle of the SMBHB. The

orbital phase and frequency of the SMBHB are

Φ(t) = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω(t)−5/3

)
(3.2.5)

and

ω(t) =

(
ω
−8/3
0 − 256

5
M5/3t

)−3/8

. (3.2.6)

where Φ0 and ω0 are the initial values at the time of our first observation, the chirp mass

is defined byM = (m1m2)3/5/(m1 +m2)1/5, where m1 and m2 are the masses of the two

SMBHs, and dL is the luminosity distance to the source. For reasons that will become

clear later, we write the residuals for pulsar α in the following form

δtα(t, Ω̂) = sα(t, Ω̂) + nα(t) = seα(t, Ω̂) + spα(t, Ω̂) + nα(t)

=
4∑

i=1

[
ai(ζ, ι,Φ0, ψ)Aiα(t, θ, ϕ, ω0)

]

+ spα(t, ζ, ι,Φ0, ψ, θ, ϕ, ω0, Lα) + nα(t),

(3.2.7)

where ζ =M5/3d−1
L , nα(t) is the noise for each pulsar and

spα = F+(Ω̂)s+(tp) + F×(Ω̂)s×(tp). (3.2.8)

Hereon we will refer to the summation term as the Earth term and spα as the pulsar term.

We write the combination of chirp mass and luminosity distance to the binary as one

parameter because the two can not be disentangled unless there is a measurement of ḟ ,

which we do not consider here. It is customary to label the parameters (ζ, ι,Φ0, ψ) and

(θ, ϕ, ω0) extrinsic and intrinsic parameters (Jaranowski et al. 1998), respectively. We
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a1 = ζ
[
(1 + cos2 ι) cos 2Φ0 cos 2ψ + 2 cos ι sin 2Φ0 sin 2ψ

]

a2 = −ζ
[
(1 + cos2 ι) sin 2Φ0 cos 2ψ − 2 cos ι cos 2Φ0 sin 2ψ

]

a3 = ζ
[
(1 + cos2 ι) cos 2Φ0 sin 2ψ − 2 cos ι sin 2Φ0 cos 2ψ

]

a4 = −ζ
[
(1 + cos2 ι) sin 2Φ0 sin 2ψ + 2 cos ι cos 2Φ0 cos 2ψ

]

(3.2.9)

and

A1
α = F+

α (Ω̂)ω(t)−1/3 sin(2Φ′(t))

A2
α = F+

α (Ω̂)ω(t)−1/3 cos(2Φ′(t))

A3
α = F×α (Ω̂)ω(t)−1/3 sin(2Φ′(t))

A4
α = F×α (Ω̂)ω(t)−1/3 cos(2Φ′(t)),

(3.2.10)

where Φ′(t) = Φ(t) − Φ0. Throughout this work we assume that the source is slowly

evolving (i.e. the phase is independent of the chirp mass) and ω(t) ≈ ω0 and Φ′(t) ≈ ω0t.

3.3 The Likelihood Function and the F-statistic

Here we will introduce our formalism and derive the likelihood function and F -statistic

(the log-likelihood ratio maximized over extrinsic parameters) for PTAs. In this work, we

will use the linear-transformation approach of Section 2.4.2 when writing the likelihood,

extending it to multiple pulsars. We will also discuss the statistical properties of the

F -statistic in the presence and absence of a signal and show that we obtain the expected

behavior for PTA data.

3.3.1 Likelihood

For a pulsar timing array with M pulsars we define the probability distribution function

of the presumed Gaussian noise as multivariate Gaussian

p(n) =
1√

det 2πΣn

exp

(
−1

2
nTΣ−1

n n

)
, (3.3.1)
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n =




n1

n2

...

nM




(3.3.2)

is the vector of the noise time-series, nα(t), for all pulsars,

Σn =




C1 S12 . . . S1M

S21 C2 . . . S2M

...
...

. . .
...

S1M S2M . . . CM




(3.3.3)

is the multivariate covariance matrix, and

Cα = 〈nαnTα〉 (3.3.4)

Sαβ = 〈nαnTβ 〉
∣∣
α6=β (3.3.5)

are the auto-covariance and cross-covariance matrices of the pulsar noise for pulsar α and

pulsar pair (α,β), respectively. It is important to note that in the case of uncorrelated

noise, the off-diagonal cross covariance matrices, Sαβ, vanish. In practice, we do not know

the auto-covariance matrices a priori and we must estimate them from our residual data,

δtα. For this work, we note that in the small signal regime (which is almost certainly the

case for our real PTA data sets) the auto-covariance matrix of the data is

Σδt,α = 〈rαrTα 〉 = 〈sαsTα〉+ 〈nαnTα〉

≈ 〈nαnTα〉 = Cα,
(3.3.6)

since the amplitude of the signal is much smaller than the noise. Therefore, it is possible

to make an estimate of the auto-covariance matrix of the noise, Cα from our observable

data δtα(t).

In order to time pulsars, a timing model is fit out of the pulsar TOAs via a weighted

least squares fitting routine (Hobbs et al. 2006). This procedure can be expressed via a

data-independent linear operator R (see Demorest et al. 2013 for details) so that

r̃ = Rδtpre, (3.3.7)
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Figure 8 : SMBHB waveforms in two different regimes. Each plot shows the waveform before (dotted

blue) and after fitting (solid green) for a full timing model including spin-down, astrometeric and binary

parameters. Top Panel: The Earth and pulsar term modulations lie within the same frequency bin.

Bottom Panel: The Earth term and pulsar term modulations are in different frequency bins.

where

R =




R1 0 . . . 0

0 R2 . . . 0

...
...

. . .
...

0 0 . . . Rn




(3.3.8)

is a matrix with sub-matrices Rα, which are NTOA × NTOA fitting operators for each

pulsar and r̃ are the post-fit residuals. From Eq. (3.3.7) we can see that ñ = Rn, where

ñ is the post-fit noise. The effect of this fitting procedure on the waveforms can be seen

in Figure 8 where the waveform is changed, quite significantly, from its pre-fit form. It is

straightforward to show that the probability distribution function for ñ is

p(ñ) =
1√

det 2πΣñ

exp

(
−1

2
ñTΣ−1

ñ ñ

)
, (3.3.9)
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Σñ = 〈ññT 〉 = R〈nnT 〉RT . (3.3.10)

The fitted residuals can therefore be written as

r̃ = R (s + n) = s̃ + ñ, (3.3.11)

where s̃ = Rs and

δtpre =




δt1

δt2
...

δtM



, s =




s1

s2

...

sM




(3.3.12)

are the residual data and signal template for each pulsar, respectively. We can therefore

write the likelihood of the data r̃ given some signal template s

L(s|r̃) = p(r̃|s) =
1√

det 2πΣñ

exp

(
−1

2
(r̃− s̃)TΣ−1

ñ (r̃− s̃)

)
. (3.3.13)

We define the inner product for two time vectors x and y using the post-fit noise covari-

ance matrix Σñ as

(x|y) = xTΣ−1
ñ y. (3.3.14)

In this notation we can write the log of the likelihood ratio as

ln Λ = ln
L(s|r̃)

L(0|r̃)
= (r̃|s̃)− 1

2
(s̃|s̃). (3.3.15)

It is worth pointing out that finding the inverse of Σñ is computationally intensive. Aside

from it being a very large matrix, the fitting procedure results in loss of degrees of freedom

in the data which makes Σñ singular. Inverting this matrix therefore requires singular

value decomposition. In most realistic scenarios we can assume that the off-diagonal

cross-covariance matrices are small and expand the inverse of Eq. (6.2.5) in a Neumann

series (see Equation 72 of Anholm et al. 2009 for details). In the simulations shown later

in the paper we will assume that any correlated noise is much less than the uncorrelated

part, thus we treat Σñ as a block diagonal matrix of the auto-covariance matrices for

each pulsar.



www.manaraa.com

673.3.2 The Earth-term F-statistic

We now analytically maximize over the extrinsic parameters (ζ, ι,Φ0, ψ) in the signal

model. A very similar calculation was first done by Jaranowski et al. (1998) in the

context of LIGO, subsequently by Cornish & Porter (2007) in the context of LISA, and

very recently by Babak & Sesana (2012) in the context of pulsar timing. For clarity, here

we review this calculation in the notation introduced above. For this calculation we treat

the pulsar term as a noise source and write our signal template in the form

s(t, Ω̂) = se(t, Ω̂) =
4∑

i=1

ai(ζ, ι,Φ0, ψ)Ai(t, θ, ϕ, ω0), (3.3.16)

where

Ai =




Ai1

Ai2
...

AiM



. (3.3.17)

Later we will explain the circumstances under which it is safe to drop the pulsar term.

Using the Einstein summation convention we can now write the log-likelihood ratio as

ln Λ = aiN
i − 1

2
M ijaiaj, (3.3.18)

where N i = (r̃|Ai) and M ij = (Ai|Aj). Maximizing the log-likelihood ratio over the four

amplitudes ai gives

0 =
∂ ln Λ

∂ak

∣∣∣∣
â

= Nk −M ikâi, (3.3.19)

yielding the maximum likelihood estimators for the four amplitudes

âi = MijN
j, (3.3.20)

where Mij = (M ij)−1. Substituting these back into the log-likelihood results in the

Fe-statistic

2Fe = N iMijN
j. (3.3.21)

The distribution of 2Fe is a non-central χ2 distribution with 4 degrees of freedom and a

non-centrality parameter ρ̄2. It is straightforward to show that the expectation value is

〈2Fe〉 = 4 + ρ̄2

= 4 + (s̃e|s̃e) + 2(s̃p|s̃e) + (s̃p|Ai)Mij(s̃
p|Aj),

(3.3.22)
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68where sp is the functional form of the pulsar term and the second two terms in ρ̄2 are due

to the fact that we have only included the Earth term in our templates s. In Figures 9(c)

and 9(d) we can see that the probability distribution functions of 2Fe follow the expected

distributions in the absence and presence of a signal. While only the intrinsic parameters

are formally searched over, it is also possible to get estimates of the maximized extrinsic

parameters by constructing the following quantities (Cornish & Porter 2007):

A+ =
√

(â1 + â4)2 + (â2 − â3)2

+
√

(â1 − â4)2 + (â2 + â3)2,
(3.3.23)

A× =
√

(â1 + â4)2 + (â2 − â3)2

−
√

(â1 − â4)2 + (â2 + â3)2

(3.3.24)

and

A = A+ +
√
A2

+ + A2
×. (3.3.25)

It is then possible to recover the maximized parameters

ι = cos−1

(−A×
A

)
, (3.3.26)

ψ =
1

2
tan−1

(
A+â4 − A×â1

A×â3 + A+â2

)
, (3.3.27)

Φ0 = −1

2
tan−1

(−(A×â1 − A+â4)

(A+â3 + A×â2)

)
, (3.3.28)

ζ =
|A|
4
. (3.3.29)

It is interesting to examine the case of one pulsar. In this case, Eq. (3.3.19) has no

solution because the matrix M ij is singular. The reason for this is that it is incorrect to

write the residuals in the form of Eq. (3.2.7) with four degrees of freedom. For one pulsar,

the signal has only two degrees of freedom: an amplitude and a phase, or equivalently,

two unknown amplitudes, thereby making the maximization over four independent am-

plitudes an ill-posed problem. Thus, at least two pulsars are needed to solve Equation

3.3.19. It should be noted that it is straightforward to generalize this statistic to N GW

sources, we will simply have 4N independent amplitudes instead of just 4 (see Babak &

Sesana 2012 for more details). However, for simplicity in this work we will deal with just

one GW source.
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Figure 9 : Histograms and expected probability distribution functions of 2Fp and 2Fe in the absence

and presence of a signal for 20 pulsars. Each simulation was done with the search parameters fixed

and 1000 realizations of white Gaussian noise. (a): distribution of 2Fp in the absence of a signal. (b):

distribution of 2Fp in the presence of a signal with non-centrality parameter ρ2. (c): distribution of 2Fe
in the absence of a signal. (d): distribution of 2Fe in the presence of a signal. The dashed (red) curve

is a χ2 distribution with a non-centrality parameter assuming that only the Earth term is present in the

data. The solid (green) curve is a χ2 distribution with non-centrality parameter ρ̄2 for Fe-statistic, and

ρ2 for the Fp-statistic.

Justification for dropping the pulsar term

There are two cases in which the pulsar term is truly a negligible contribution to the Fe-
statistic and can be dropped from the analysis with no change its statistical properties.

The first is the astrophysically likely (in terms of the resolvability of the source)

scenario in which the evolution of the GW frequency is such that the Earth and pulsar

terms are in different frequency bins (see e.g. Figure 2 of Sesana & Vecchio 2010). At

the frequency of the Earth term the signal will build up coherently among the network

of pulsars. The pulsar term signals, even if they all happen to be at the same frequency,

will not because they have different phases that depend on the the pulsar distances. This
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Figure 10 : Probability distribution functions for 2Fe in the limits that the pulsar term is negligible. (a):

probability distribution function in the limit that all pulsar terms lie outside the Earth term frequency

bin. (b): probability distribution function in the limit of large M (M = 50 in this case) for overlapping

Earth and pulsar term frequencies. The dashed (red) curve is a χ2 distribution with a non-centrality

parameter assuming that only the Earth term is present in the data. The solid (green) curve is a χ2

distribution with non-centrality parameter ρ̄2 that takes both the Earth and pulsar term into account.

effect is illustrated in Figure 10(a) where the reference χ2 distributions have 4 degrees of

freedom and non-centrality parameters (s̃|s̃) (solid line) and (s̃e|s̃e) (dashed line).

The second case is the scenario in which the Earth and pulsar term lie in the same

frequency bin. Although a majority of the SMBHB sources are expected to be in this

regime, they will likely have low mass and/or contribute at low frequency. Thus, these

sources are less likely to be individually resolved. Nonetheless, in this case, there is still a

phase difference between the Earth and pulsar terms. We expect that for a large number

of pulsars the pulsar term signals will cancel because they all have different phases. We

can see from Figure 9(d) that for a moderate number of pulsars (M = 20 in this case)

the pulsar phases do not completely cancel and our measured values of the Fe-statistic

are higher than expected with just the earth term because the last two terms of Equation

(3.3.22) do not sum to zero. However, in the case of large M (M & 50) the pulsar term

contributions sum approximately to zero, and again we have a χ2 distribution with 4

degrees of freedom and non-centrality parameter (s̃e|s̃e) (see Figure 10(b)).

If we happen to detect a signal that falls into the intermediate category mentioned

above where M < 50 and some or all of the pulsar terms are in the same frequency

bin as the Earth term, then this will create a bias in the recovered sky location but

not in our ability to confidently detect the signal (see Figure 1 of Ellis et al. (2012b)).
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71This is because our detection criterion is based on the false alarm probability. As will

be discussed in detail in Section 3.3.4, the false alarm probability only depends on the

probability distribution function when the signal is absent, and we can see from Figure

9(a) that 2Fe follows the expected distribution, because it is independent of the signal

properties.

3.3.3 The incoherent F-statistic

It is indeed possible to include the pulsar term in our analysis if we operate in the low

frequency (or low chirp mass) regime where the frequency evolution of the source is slow

enough that the frequency at the Earth and the pulsar are essentially the same so that

the signal is a sum of two sinusoids of different phases: the pulsar term and the Earth

term. To understand this more quantitatively, consider the Taylor series expansion of the

orbital frequency of Eq. (5.A.2) evaluated at the pulsar time

ω(tp) = ω0

(
1− 256

5
M5/3ω

8/3
0 tp

)−3/8

≈ ω0

(
1 +

96

5
M5/3ω

8/3
0

[
te − L(1 + Ω̂ · p̂)

])
.

(3.3.30)

From this, we can see that ω(tp) ≈ ω0 when

ω0 �
(

5

96
M−5/3

∣∣∣T − L(1 + Ω̂ · p̂)
∣∣∣
−1
)3/8

, (3.3.31)

where T is the total observation time. If we consider only one intrinsic parameter, ω0,

then the template for pulsar α is

sα(t, Ω̂) =
2∑

i=1

biα(ζ, ι, ψ,Φ0, φα, θ, ϕ)Bi
α(t, ω0), (3.3.32)

where

φα = ω0Lα(1 + Ω̂ · p̂α) (3.3.33)
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72is the pulsar dependent phase. Making use of Eq. (3.2.9) we can now write the pulsar

dependent amplitudes and basis functions as

b1α =

[ (
F+
α a1 + F×α a3

)
(1− cosφα)

−
(
F+
α a2 + F×α a4

)
sinφα

] (3.3.34)

b2α =

[ (
F+
α a2 + F×α a4

)
(1− cosφα)

+
(
F+
α a1 + F×α a3

)
sinφα

] (3.3.35)

and

B1
α(t) =

1

ω
1/3
0

sin(2ω0t) (3.3.36)

B2
α(t) =

1

ω
1/3
0

cos(2ω0t), (3.3.37)

where, again, ω0 is the orbital angular frequency of the SMBHB. Again, using the Einstein

summation convention, the log-likelihood ratio is

ln Λ =
M∑

α=1

[
biαPα

i − 1

2
Qij
α biαbjα

]
, (3.3.38)

where Pα = (r̃α|Bi
α) and Qij

α = (Bi
α|Bj

α). Maximizing the log-likelihood ratio over the

2M amplitude parameters biα(ζ, ι, ψ, φ0, φα, θ, ϕ) gives

0 =
∂ ln Λ

∂bkβ

∣∣∣∣
b̂

= P k
β −Qik

β b̂iβ (3.3.39)

which yields the solution for the maximum likelihood estimators of the 2M amplitudes

b̂iβ = Qβ
ikP

k
β . (3.3.40)

Putting the amplitude estimators back into the likelihood ratio we obtain the Fp-statistic

2Fp =
M∑

α=1

P i
αQ

α
ijP

j
α. (3.3.41)

It is straightforward to then show that 2Fp follows a χ2 distribution with 2M degrees of

freedom and non-centrality parameter ρ2 and that

〈2Fp〉 = 2M + ρ2

= 2M + (s̃|s̃)
(3.3.42)
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73where ρ2 = (s̃|s̃) is the optimal signal-to-noise ratio (see Figure 9). Note that this is an

incoherent detection statistic since it involves sum of the squares of the data, whereas the

Earth-term Fe-statistic is coherent since it involves the square of the sum of the data.

It is worth pointing out that for the case of white Gaussian noise, the Fp-statistic is the

time domain equivalent of the weighted power spectral summing technique studied in Ellis

et al. (2012b). For colored Gaussian noise the statistic is the time domain equivalent to a

weighted power spectral summing technique with frequency dependent weights. Another

feature of this detection statistic is that it does not only apply to the low-frequency

limit. If we work in the high frequency regime where the Earth and the pulsar terms are

in different frequency bins, we can drop the pulsar term and arrive at the exact same

maximized likelihood function. In this case the pulsar dependence of the amplitudes biα

comes from the antenna pattern functions the not the pulsar phase. However, many of

the justifications for dropping the pulsar term mentioned in the previous section do not

apply in this case since the statistic is incoherent. We find that this detection statistic

will often pick out the pulsar term frequency over the Earth term frequency because the

residuals of Eq. (3.2.7) scale like ω(t)−1/3 and the pulsar term will always be at an equal

or lower frequency than the Earth term frequency due to the geometry of the system. For

the system of equations in Eq. (3.3.40) we have 2M equations and 6 +M unknowns, so if

we have 6 or more pulsars it is possible to solve for the all the parameters (ζ, ι, ψ,Φ0, θ, ϕ)

along with the pulsar phases φα.

3.3.4 False alarm probability and detection statistics

Here we review the false alarm and detection probability distribution functions both when

the intrinsic parameters are known and unknown. Our discussion follows closely that of

Jaranowski et al. (1998) and Jaranowski & Królak (2005). In the case of known extrinsic

parameters, we have shown in Sections 3.3.2 and 3.3.3 that when the signal is absent,

the statistics 2Fe and 2Fp follow χ2 distributions with 4 and 2M degrees of freedom,

respectively. It was also shown that the aforementioned statistics follow a non-central χ2

with non-centrality parameters ρ̄2 and ρ2, respectively, when the signal is present.
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eters are known and when the signal is absent and present, respectively, are

p0(F) =
Fn/2−1

(n/2− 1)!
exp(−F) (3.3.43)

p1(F , κ) =
(2F)(n/2−1)/2

κn/2−1
In/2−1

(
κ
√

2F
)

× exp

(
−F − 1

2
κ2

)
,

(3.3.44)

where n is the number of degrees of freedom, In/2−1 is the modified Bessel function of the

first kind of order n/2 − 1, and κ is ρ for Fp and ρ̄ for Fe. The false alarm probability

PF is defined as the probability that F exceeds a given threshold F0 when no signal is

present. In this case, we have

PF (F0) =

∫ ∞

F0

p0(F)dF = exp(−F0)

n/2−1∑

k=0

Fk0
k!
. (3.3.45)

The probability of detection PD is the probability that F exceeds the threshold F0 when

the signal-to-noise ratio is κ:

PD(F0, κ) =

∫ ∞

F0

p1(F , κ)dF , (3.3.46)

however; we do not deal with the detection probability in this work. Our detection

criterion is based on the false alarm probability.

We now turn to the more realistic problem of calculating the false alarm probability

when the intrinsic parameters are not known. A detailed derivation and description

is given in Jaranowski & Królak (2000), here we will simply review the result. The

probability P T
F that F exceeds F0 in one or more cells is given by

P T
F (F0) = 1− [1− PF (F0)]Nc , (3.3.47)

where Nc is the number of independent cells in parameter space. The number of indepen-

dent cells can be calculated via geometrical methods described in Jaranowski & Królak

(2000) and references therein.

Here we will make the following approximations. For our Fp statistic we will set

Nc to be equal to the number of independent frequency bins defined by the Nyquist

frequency. For our Fe statistic, we will set Nc to be equal to the number of templates
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independent cells will be quite different. However, since we only have a three dimensional

parameter space (ω0, θ, ϕ), and use a nested sampling algorithm to conduct the search

(thereby reducing the number of templates in low likelihood regions of parameter space),

setting the number of templates equal to the number of independent cells is a reasonable

assumption.

3.4 Pipeline, sensitivities, and implementation

In this section we will test the Fe and Fp statistics on realistic simulated data sets. First,

we will outline our detection pipeline, then we will briefly describe our simulated data

sets and test the ability to confidently detect the signal and recover the injected intrinsic

parameters. Finally, we perform Monte-Carlo simulations to produce sensitivity curves

for PTAs of various configurations.

3.4.1 Detection Pipeline

The only inputs to our detection pipeline are the ephemeris file (typically called a “par”

file) and TOA file (typically called a “tim” file) for each pulsar. The steps in the pipeline

are as follows:

1. Use the standard pulsar timing package Tempo2 (Hobbs et al. 2006) to form the

residuals for each pulsar.

2. Use Tempo2 plugin to output the design matrix for each pulsar (see Chapter 15

of Press et al. 1992 for more details). Then construct R from the design matrices

following Demorest (2007).

3. Use a maximum likelihood method to make an estimate of Σñ. Note that the cross

terms in Eq. (6.2.5) are expected to be small, so we will ignore them for this work.

4. Follow the methods described in Secs. 3.3.2 and 3.3.3 to construct the detection

statistics defined in Equations (3.3.21) and (3.3.41) and search the relevant param-

eter space. If using the Fp-statistic we simply grid up the frequency space for the
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(Feroz & Hobson 2008; Feroz et al. 2009) to search the three dimensional intrinsic

parameter space.

5. Output the maximum value of the detection statistic and number of templates used

and compute the relevant false alarm probability using Eq. (3.3.47). Here we set

our false alarm probability threshold to 10−4. If the false alarm probability corre-

sponding to our maximum value of F is less than 10−4 then we claim a detection.

6. Use the maximum likelihood estimators to find the extrinsic parameters (using

Equations (3.3.26)–(3.3.29)), and construct the posterior probability distribution

to find the intrinsic parameters by sampling the maximized likelihood (Equation

(3.3.21)). As mentioned above, when using the Fp statistic, one could use numerical

techniques to obtain estimates of the extrinsic parameters.

7. Use the maximum likelihood values of the intrinsic and extrinsic parameters to

construct Gaussian prior distributions and carry out parameter estimation on the

the full 7 dimensional search space, again using MultiNest, to get better estimates

of SMBHB parameters.

In this chapter we will only conduct steps 1–5 and leave steps 6 and 7 for future work.

Although this work uses simulated datasets, nothing in this detection pipeline makes any

assumptions about the spacing of the data, or the color of the noise.

In the absence of a detection we would like to set upper limits on the strain amplitude

as a function of GW frequency. This can be accomplished as follows

1. Run the detection pipeline and determine the value of the F -statistic.

2. For each frequency, choose the value of ζ corresponding to a specific strain am-

plitude. Then inject a SMBHB signal with randomly drawn binary orientation

parameters (cos ι, ψ,Φ0, θ, ϕ).

3. Run the detection pipeline again on this injected data and measure the value of the

F -statistic.
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Figure 11 : Posterior probability distribution functions for sky location and orbital frequency for a

network SNR=14 injection with and without red noise. Here we have used a PTA with 25 pulsars.

The vertical lines indicated the injected parameters and the contours are the one, two and three sigma

contours. (a): 100 ns white noise. (b): 100 ns white noise and uncorrelated red noise with amplitude

A = 4.22 × 10−33 s−1.1 and γ = 4.1. We see that the sky location and orbital frequency have all been

recovered at the one-sigma level in both cases.

4. Keep the value of ζ fixed and perform a given number of injections with different

binary orientation parameters (1000, for example) and determine the fraction of

F -statistic values that is larger than the value measured in the original data.

5. Repeat steps 2–4 until the strain amplitude is such that 95% of the injections give

a value of the F -statistic that is larger than the original value.

6. Record this value and repeat steps 2–5 at each frequency.

3.4.2 Simulated data sets

For this work we use a simulated pulsar timing array with sky locations drawn from

uniform distributions in cos θ and ϕ. All pulsars are assumed to have a distance of

1 kpc and a white noise rms of 100 ns with equal error bars. The timespan of the

observations for all pulsars is 5 years with evenly spaced bi-monthly TOA measurements.

Each set of residuals has been created by fitting a full timing model including spin-

down, astrometric, and binary parameters (see Edwards et al. 2006 for details). As a

check, in some simulations an uncorrelated red noise process with a power law spectrum

P (f) = Af−γ is included in the residuals. This has no effect on our results. While these
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or time varying DM variations, they do capture the essence of real timing residuals in the

quadratic fitting of the spin-down parameters and the yearly and half yearly sinusoidal

trends due to the sky location, proper motion and parallax fitting. Very uneven sampling

is likely to reduce our sensitivity at higher frequencies and a detailed study of this problem

will be presented in future work.

3.4.3 Implementation of the detection statistics

Here we will test our detection statistics on mock data sets with injected SMBHB GW

signals in the presence of white and red Gaussian noise. We will focus primarily on the

Fe-statistic since, as we will show, it is a more robust detection statistic. Then, we will

implement a procedure to produce a sensitivity curve for the GW strain amplitude as

a function of frequency for a simulated NANOGrav (Demorest et al. 2013) array and

plausible SKA arrays.

Figure 11 shows the posterior probability distributions of the intrinsic search parame-

ters for simulated SMBHB signals in the presence of 100 ns white noise (Figure 11(a)) and

uncorrelated red noise with amplitude A = 4.22× 10−33 s−1.1 and γ = 4.1 (Figure 11(b)).

The two cases do have different realizations of the white noise, however, we can see that

the Fe-statistic does a very good job of determining the frequency and sky location of

the source. In general, the Fe-statistic is more robust than the Fp statistic because it

produces explicit estimates of the sky location as well as the frequency, which is very im-

portant when looking for electromagnetic counterparts (Sesana et al. 2012; Tanaka et al.

2012).

It is possible to produce a sensitivity curve by a method that is similar to what we

use to set upper limits. In this case we begin with simulated data with a given level of

noise and no signal present. We follow the method presented in Sec. 3.4.1 except we

now look for strain amplitude that gives a false alarm probability that is less than than

our threshold (10−4 in our case) in 95% of realizations for each frequency. For clarity, we

define the strain amplitude as

h = 2
M5/3(πfgw)2/3

dL
, (3.4.1)
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differentiating Eq. (3.2.3) and (3.2.4) with respect to time. For simplicity and speed we

have simplified this method for our sensitivity plots. Instead of performing a search at

each frequency, we simply evaluate the Fe and Fp statistics at the values of the injected

parameters. The purpose of these sensitivity plots is to illustrate the overall features of

the different detection statistics and to give order of magnitude estimates of expected

sensitivity for real data.
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Figure 12 : Sensitivity curves for the Fe and Fp statistics for different PTA configurations (all pulsars

have 100 ns residuals). The thick lines represent the Fe-statistic and the thin lines represent the Fp-
statistic. The black(blue) curves are for a simulated PTA with 17 pulsars and the sky locations of the

NANOGrav pulsars. The green(gray) curves a for a simulated PTA with 100 pulsars and random sky

locations.

We have produced various sensitivity curves for both the Fe and Fp statistics in Figure

12. The two scenarios that we look at are a 17 pulsar simulated NANOGrav array in which

we use the real sky location and timing models of the NANOGrav pulsars, and a simulated

PTA with 100 pulsars at random sky locations. The loss in sensitivity at GW frequencies

of 1 yr−1 and 0.5 yr−1 are due to the fitting of the pulsar’s sky location and proper motion,

and parallax, respectively. It is important to note that the sensitivity curves for the Fe
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pulsars the Fe statistic is more sensitive by a factor of ∼ 2 for almost all frequencies.

This is due to the different scaling relations of the statistics vs. the number of pulsars

(Fe ∝
√
M while Fp ∝ M1/4). However, the plot shows that the Fp-statistic is more

sensitive at lower frequencies and the Fe-statistic is more sensitive at higher frequencies.

There are two effects that contribute to this. The first is a result of our simulation and

stems from the fact that we assume that for a given frequency, the maximum value of

the Fe-statistic is at the injected sky location. However, for low frequencies where the

Earth and pulsar term are in the same frequency bin this assumption breaks down as the

sky location will be biased (see e.g. Ellis et al. 2012b). The second effect is one inherent

to our detection statistics themselves. As discussed in Sec. 3.3.3, the Fp-statistic has

different interpretations in the low and high frequency regimes. In the low frequency

regime, it effectively contains the entire signal (Earth and pulsar terms), and in the high

frequency regime it only contains the Earth term piece since the pulsar terms are out of

that frequency bin. This distinction results in a different scaling relation for the ratio

of Fe/Fp. In the low frequency case the Fe-statistic scales coherently but it only has

approximately half of the signal, whereas, the Fp-statistic scales incoherently but has

the full signal. Therefore, the ratio scales as M1/4/2, thus the incoherent method will do

better for M ≤ 16. Conversely, in the high frequency regime, both statistics contain only

half of the signal and the ratio scales as M1/4. Therefore, the coherent statistic will do

about a factor of 2 better than the incoherent method for M ≥ 16.

3.5 Summary and Outlook

In this work we have adapted the standard F -statistic (Jaranowski et al. 1998) to act as

a detection statistic for continuous wave searches in realistic PTA data. We have also

developed an incoherent detection statistic that maximizes over all pulsar contributions

to the likelihood. Both of these detection statistics are implemented in the time domain

to avoid spectral leakage problems associated with Fourier domain methods applied to

irregularly sampled data. These methods take the pulsar timing model fitting into ac-

count and have been generalized to account for both correlated and uncorrelated colored
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as it will not add coherently. We have justified the use of this approximation in most

astrophysically likely scenarios. It was shown that both detection statistics follow well

known χ2 distributions in the presence and absence of GW signals and therefore have

well defined false-alarm probabilities. We have shown that the Fe statistic can not only

confidently detect a GW signal but can also determine the sky location and frequency

of the source to relatively high accuracy in the presence of white and colored Gaussian

noise. A realistic implementation of a fully functional continuous GW pipeline starting

from basic pulsar timing data and methods for computing upper limits on the strain am-

plitude were outlined in detail. Finally, we have used simulated data sets of various PTA

configurations to produce sensitivity curves for our F -statistics. From these sensitivity

curves, we have shown that the sensitivity of the Fe and Fp statistics are very similar

for M ≤ 25 pulsars and that the Fe statistic becomes more sensitive for M > 25 and for

higher frequencies.

As was shown in Ellis et al. (2012b), explicitly searching over the pulsar distances

or somewhat equivalently, the GW phases at the pulsar locations (in the low frequency

regime), is computationally prohibitive for M & 5. A statistic that could maximize over

these GW phases would greatly reduce the parameter space of the search, while still

preserving the SNR of the full signal. The implementation of such an algorithm will be

the subject of future work. However, we will give the derivation here. From Eq. (3.2.7),

in the low-frequency limit we can write the signal in the following form

sα(t) =
4∑

i=0

[
(cos Φα − 1)δji + sin Φαεi

j
]
ajA

i, (3.5.1)

where Φα = ωLα(1 + Ω̂ · p̂α), ai = ai and Ai are defined in Equations (3.2.9) and (3.2.10),

respectively, and the matix

εi
j =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



. (3.5.2)
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ln Λ =
M∑

α=1

[
bα(cos2 Φα − sin2 Φα) + cα cos Φα

+ dα sin Φα + fα sin Φα cos Φα

]
,

(3.5.3)

with

bα = −1

2
M ij

α aiaj (3.5.4)

cα = N i
αai +M ij

α aiaj (3.5.5)

dα = N i
αεija

j (3.5.6)

fα = −M ij
α ε`jaia

` (3.5.7)

where Mα and Nα are defined by the following relations

M ij
α = (Aiα|Ajα) (3.5.8)

N i
α = (rα|Aiα). (3.5.9)

Maximizing the log-likelihood with respect to the pulsar phases Φβ, we obtain

0 =
∂ ln Λ

∂Φβ

∣∣∣∣
Φ̂

= fβ(cos2 Φ̂β − sin2 Φ̂β) + 2bβ cos Φ̂β sin Φ̂β

− cβ sin Φ̂β + dβ cos Φ̂β = 0.

(3.5.10)

Setting x = cos Φ̂α, this expression reduces to a quartic equation of the form

0 = (4f 2
α + 16b2

α)x4 + (4fαdα + 8cαbα)x3

+ (c2
α − 4f 2

α − 16b2
α)x2 + (−2fαdα − 8cαbα)x

+ f 2
α − c2

α

(3.5.11)

which is guaranteed to have at least one unique solution although it is unknown whether

we are guaranteed to have a solution in the range −1 ≤ x ≤ 1 which corresponds to

a physical value of Φ̂β. This maximization results in a monumental reduction in the

parameter space that needs to be searched. It takes on the order of ∼ 102M templates

just to cover the pulsar phases (Ellis et al. 2012b). In practice, we could construct the

various quantities Mα, Nα, a, bα, cα, dα, and fα, solve Eq. (3.5.11) numerically to find

the maximum likelihood estimators for all the pulsar phases. Substituting these solutions
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dimensional parameter space (since the amplitudes a depend on 4 parameters (ζ, ι,Φ0, ψ)

and the basis functions A depend on 3 parameters (θ, ϕ, ω0)). We note, however, that

this can be easily handled with a Markov chain Monte-Carlo (MCMC) or nested sampling

algorithm.

The above derivation is valid but is quite challenging to implement practically. A very

similar type of analysis is proposed in Taylor et al. (2013) in which the pulsar phase is

maximized numerically as opposed to analytically as above.
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Chapter 4

A Bayesian Analysis Pipeline for

Continuous GWs

“Now you can luxuriate in a nice jail cell, but if your hand
touches metal, I swear by my pretty floral bonnet I will end you.”

— Malcom Reynolds, Firefly: Our Mrs. Reynolds

This chapter is based on:
A Bayesian analysis pipeline for continuous GW sources in the PTA band
J. A. Ellis
CQG, (2013) 30, 224004

4.1 Introduction

A significant amount of work has gone into the detection problem for continuous GWs

from SMBHBs. Both Jenet et al. (2004) and Yardley et al. (2010) use a Lomb-Scargle

periodogram based approach to essentially measure the excess power that a continuous

GW would induce compared to a noise only model. van Haasteren & Levin (2010)

developed a Bayesian framework aimed at the detection of GW memory in PTAs; however,

the authors mention that the methods presented could be used for continuous GW sources

as well. Most recently, a maximized likelihood based approach has been developed by

Babak & Sesana (2012); Ellis et al. (2012c) and was later extended to include multiple

resolvable sources in Petiteau et al. (2013).

Many authors have focused on determining the parameter accuracy that we may hope

to extract from a future detection of a continuous GW from a SMBMB. Sesana & Vecchio
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a study of SMBHB parameters that are measurable with PTAs using a Fisher matrix

approach. Corbin & Cornish (2010) have developed a Bayesian Markov Chain Monte-

Carlo (MCMC) data analysis algorithm for parameter estimation of a SMBHB system in

which the pulsar term is taken into account in the detection scheme, thereby increasing

the signal-to-noise-ratio (SNR) and improving the accuracy of the GW source location

on the sky. Recently, Lee et al. (2011) have developed parameter estimation techniques

based on vector Ziv-Zakai bounds incorporating the pulsar term and have placed limits on

the minimum detectable amplitude of a continuous GW source. In the aforementioned

work, the authors also propose a method of combining timing parallax measurements

with single-source GW detections to improve pulsar distance measurements.

In this work we introduce a fully functional Bayesian pipeline aimed at both detection

and parameter estimation of single continuous GWs. To this end, we make use of MCMC

augmented with Parallel Tempering, an adaptive jump proposal scheme and thermody-

namic integration for evidence evaluation. Previous work has made use of the Fisher

matrix or similar techniques to either estimate parameter uncertainties or propose jumps

in an MCMC algorithm. Since it is known that the Fisher matrix is limited in use and

only applies to large SNR (Vallisneri 2008), we choose to use an Adaptive Metropolis

(AM) approach first developed in Haario et al. (2001); Andrieu & Thoms (2008) and

later applied to cosmology and GW parameter estimation in van der Sluys et al. (2008);

Taylor & Gair (2012); Taylor et al. (2012).

The layout of the chapter is as follows. In section 4.2 we introduce the signal model and

notation used in this work. In section 4.3 we briefly review MCMC techniques, adaptive

metropolis, parallel tempering, thermodynamic integration and introduce our likelihood

function and priors. In section 4.4 we introduce the semi-realistic simulated datasets that

we use to test our algorithm. In section 4.5 we test our algorithm on simulated data and

make a few statements about the measurability of SMBMB parameters in realistic PTA

data sets. Finally, we briefly mention future work and conclude in section 4.6.
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Here we use the signal model of Eqs. 3.2.3 and 3.2.4. From this signal model and the

following frequency evolution equations

Φ(t) = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω(t)−5/3

)
(4.2.1)

and

ω(t) =

(
ω
−8/3
0 − 256

5
M5/3t

)−3/8

, (4.2.2)

we see that our parameter space is (8 + Npsr) dimensional where, Npsr is the number of

pulsars in the array and the continuous wave parameter space vector is

~λ = {θ, ϕ,Φ0, ψ, ι,M, dL, ω0}, (4.2.3)

where Φ0 and ω0 are the initial values at the time of our first observation, the chirp mass

is defined by M = (m1m2)3/5/(m1 + m2)1/5(1 + z), where m1 and m2 are the masses of

the two SMBHs, z is the redshift, dL is the luminosity distance to the source, ψ is the

polarization angle and (θ, ϕ) are the polar and azimuthal sky locations of the GW source.

However, since typical pulsar distance uncertainties are on the order of tens of percent

(Verbiest et al. 2012), in order to attain phase coherence in our search algorithm, we must

allow the pulsar distance to vary as a search parameter as well. Henceforth, we will adopt

the notation that ~λα = {~λ, Lα} in order to denote the fact that the pulsar distance is a

search parameter.

Eqs. 4.2.1 and 4.2.2 are true in general and can be applied when the frequency evolves

appreciably over the total observing time. However, it is very useful to work under the

assumption of slowly evolving binaries where Tchirp � T , with T the observing time and

Tchirp =
ω0

ω̇
= 3.2× 105 yr

( M
108 M�

)−5/3(
f0

1× 10−8 Hz

)−8/3

, (4.2.4)

where

ω̇ =
96

5
M5/3ω

11/3
0 . (4.2.5)

Since typical PTA observations are on the order of 10–20 years and T/Tchirp ∼ 10−4, this

is a safe assumption for a broad range of masses and initial orbital frequencies of interest.
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simply as

Φe(t) = Φ0 + ω0t (4.2.6)

ωe(t) = ω0. (4.2.7)

However, for the pulsar term we are dealing with the retarded time and must include the

first order corrections to the orbital frequency and phase

Φp(t) = Φ0 + ω0t− ω0L(1 + Ω̂ · p̂)− ω̇L(1 + Ω̂ · p̂)t (4.2.8)

ωp(t) = ω0 − ω̇L(1 + Ω̂ · p̂), (4.2.9)

where L is on the order of a kpc and the last term in the pulsar phase containing ω̇ terms

is responsible for any frequency evolution over the earth-pulsar light crossing time. As

we will see later, writing the pulsar phase in this way will become very useful.

4.3 Implementation

Our use of MCMC in this work is motivated by the fact that our parameter space will

be at least 9-dimensional for a PTA comprised of one pulsar and we will gain another

parameter for every pulsar that is used in the search. For typical PTAs (20 pulsars),

this means that the parameter space will be ∼ 28 dimensional. While a rudimentary

template based search technique was explored in Ellis et al. (2012b), no real effort has

gone into an efficient template based search technique. Although this parameter space is

high dimensional, it may indeed be possible to efficiently cover the parameter space using

methods such as lattice covering (Prix 2007), stochastic template banks (Harry et al.

2009), or random template banks (Messenger et al. 2009). Such investigations of these

methods applied to the PTA problem, however; are beyond the scope of this work, and

as we will show, using MCMC as a search technique is still quite efficient in this case.

4.3.1 Jump Proposals

As mentioned in Chapter 2 we use an AM scheme to update the covariance matrix

for multidimensional gaussian jumps. However since our parameter space is quite large
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will jump in subsets of correlated parameters such as the sky location parameters and

pulsar distance as well as the chirp mass and distance. In ∼20% of jumps we update all

parameter simultaneously and in the remaining ∼10% of jumps we choose one parameter

at random and propose large jumps in parameter space.

In order to ensure proper mixing and exploration of our chains we have chosen to

expand the parameter space in the following way. If we introduce the initial pulsar phase

φp = ω0L(1 + Ω̂ · p̂) (4.3.1)

and then solve for the pulsar distance

L =
φp

ω0(1 + Ω̂ · p̂)
+

2πn

ω0(1 + Ω̂ · p̂)
= Lsmall + Lbig, (4.3.2)

where n is the number of times the phase has wrapped around 2π (typically 1000s). By

writing the distance to the pulsar in this fashion we can separate out the very small scale

fluctuations (Lsmall) that are important for coherence and are typically less than a pc,

and the large scale fluctuations (Lbig) that are on the order of a kpc are important for

determining the frequency evolution of the binary. These two components are essentially

independent and explain physics on vastly different scales. So now re-writing Eq. 4.2.8

we have

Φp(t) = Φ0 + ω0t− φp − ω̇L(1 + Ω̂ · p̂)t, (4.3.3)

where we jump in both φp and L ≈ Lbig. It should be noted that for certain parameter

combinations (particularly large chirp mass and high frequency) the approximation to

the pulsar phase in Eq. 4.3.3 may differ from the true phase by a constant that depends

on the pulsar distance. However, since this is only a constant offset, it can be absorbed

into φp and this approximation is still completely valid.

4.3.2 Likelihood and Priors

Following section 2.4.3 we write the pulsar timing residuals as

δt = Mδξ + n+ s, (4.3.4)
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between the true pulsar timing parameters and our best fit parameters, n is the noise

present in the TOAs (radiometer noise, red noise, etc.), and s is our continuous GW

signal. The likelihood function can be marginalized over the timing model parameters δξ

to obtain

p(δt|~θ, ~λ) =
exp

[
−1

2
(δt− s)T G(GTCG)−1GT (δt− s)

]

√
(2π)n−m det(GTCG)

, (4.3.5)

where G is an n × (n − m) matrix with n the number of TOAs and m the number of

fitted parameters in the timing model.

For this work we will assume that the noise parameters ~θ are know from some noise

estimation done beforehand (see e.g. van Haasteren & Levin (2013); Ellis et al. (2014))

and will only focus on characterizing the continuous GW parameters ~λ. We will also

assume that the residuals between pulsars are uncorrelated. In other words, we are

assuming that the stochastic GW background will be negligible compared to the intrinsic

noise in each pulsar. In general this is not likely to be a good assumption when we would

expect a detection of a single GW source. The effects of omitting the correlations in

the likelihood function are unknown and will be the subject of future work. Under these

assumptions, the likelihood function for the full PTA can be written as

p(δt|~λ) =

Npsr∏

α=1

p(δtα|~λα), (4.3.6)

where δtα and ~λα and the residuals and model parameters for the αth pulsar, respectively.

Since we are assuming the noise is fixed (and known) then we can write the log-likelihood

ratio of a model with a single continuous GW to a model with just noise as

ln Λ =

Npsr∑

α

[(
δtα|s(~λα)

)
− 1

2

(
s(~λα)|s(~λα)

)]
, (4.3.7)

where the inner product between two time-series x and y is

(x|y) = xTG(GTCG)−1GTy. (4.3.8)

We choose isotropic priors on the angular parameters and flat priors in the log of the

chirp mass, luminosity distance, and frequency of the GW. For the pulsar distance prior
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Very Long Baseline Interferometry (VLBI) to contain the prior space as follows

p(~L) =

Npsr∏

α=1

1√
2πσ2

α

exp

(
−(Lα − LEM

α )2

2σ2
α

)
, (4.3.9)

where LEM
α is the best measured distance for the αth pulsar and σα is the 1-sigma uncer-

tainty on that distance measurement.

4.4 Simulated data sets

In this work we will simulate “toy model” datasets that represent realistic yet optimistic

present day residuals. We have chosen an array of 10 pulsars that are meant to represent

the best 10 IPTA pulsars in terms of timing precision. The datasets have uneven sampling,

varying error bars, and time spans corresponding to the real pulsar observing span. The

data is summarized in Table 1. To create this data we use the mean RMS from the IPTA

Table 1 : Simulated IPTA pulsar datasets. The RMS values are measured from the data with no injected

signal. The pulsar distances are taken from Verbiest et al. (2012) if available. Otherwise the pulsar

distances were taken from the ATNF catalog.

Pulsar Name RMS [ns] Time Span [yr] Pulsar Distance [kpc]

J0437−4715 69 14.8 0.156± 0.001

J1909−3744 100 9.0 1.26± 0.03

J1713+0747 136 18.3 1.05± 0.06

J1939+2134 141 16.3 5.0± 2.0

J1744−1134 366 16.9 0.42± 0.02

J1857+0943 402 14.9 0.9± 0.2

J1640+2224 410 14.9 1.19± 0.24

J2317+1439 412 14.9 1.89± 0.38

J1824−2452 602 5.7 3.6± 0.72

J0030+0451 792 12.7 0.28± 0.1

pulsars and draw each residual from a gaussian distribution centered on the RMS with
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error bars and assuring that we only have gaussian white noise. We then simulate a

continuous GW signal as in section 4.2 and add it to our simulated noise. Finally, in an

attempt to take into account the most important part of the timing model, we fit out

a 2nd order polynomial from the data. The pulsar distances and uncertainties used in

this analysis are the best measured values taken from Verbiest et al. (2012) if available,

otherwise, we use the values from the Australia National Telescope Facility (ATNF) pulsar

catalog (Manchester et al. 2005)1 and assume a 20% uncertainty. The rough cadence is

chosen to simulate bi-monthly sampling. In order to present an idealistic yet plausible

representation of current IPTA data sets, we have chosen to not include any intrinsic

red noise which would only act to decrease sensitivity at low frequencies, therefore; the

results presented here are likely to be optimistic.

4.5 MCMC simulations

In this section we wish to test the efficacy of our algorithm by injecting continuous GW

signals into our simulated datasets described above. Although our main goal is to test

our algorithm, we also wish to add a certain level of realism to these simulations. For

this reason we have used mock IPTA datasets and will focus any astrophysical statements

mostly to low SNR sources (SNR ∼ 7) as this represents a realistic possibility in the next

decade. We also include injections at higher SNR and mimic these injections in ideal

datasets (10 pulsars timed for 10 years all with 100 ns RMS drawn from an isotropic

distribution on the sky) which have been used in previous parameter estimation work for

PTAs (Corbin & Cornish 2010; Sesana & Vecchio 2010; Lee et al. 2011).

Recent work has shown that there may be potential single GW source “hot spots”

in the Virgo, Fornax and Coma clusters (Simon et al. 2013). Since our purpose here is

only to illustrate the efficacy of our algorithm, we have randomly chosen to inject GW

sources at the sky location corresponding to the Fornax cluster with a chirp mass of

M = 7× 108M� and initial orbital period of 3.16 yr. The distance to the GW source is

1http://www.atnf.csiro.au/people/pulsar/psrcat/
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SNR2 =
∑

α

(
s(~λinj)|s(~λinj)

)
α
, (4.5.1)

where the sum is over the number of pulsars and ~λinj are the injected source parameters.

This choice of injected parameters is justified since the amplitude of our GW induced

residuals scales as M5/3ω−1/3 and the stochastic GWB and other potential red noise

sources will lower our sensitivity at lower frequencies. Therefore, we are likely to detect a

source with high chirp mass and high frequency. See table 2 for a list of the different GW

sources and parameters used in this work. For each source, the same noise realization was

Table 2 : Simulated GW source parameters. These sources are injected at the sky location of the Fornax

cluster and the distance is scaled such that we achieve the desired SNR.

SNR θ [rad] ϕ [rad] ψ [rad] ι [rad] Φ0 [rad] M [M�] DL [Mpc] fgw [Hz]

7 2.17 0.95 1.26 1.57 0.99 7.0× 108 223.4 2× 10−8

14 2.17 0.95 1.26 1.57 0.99 7.0× 108 111.7 2× 10−8

20 2.17 0.95 1.26 1.57 0.99 7.0× 108 78.2 2× 10−8

used so that relative parameter accuracies do not depend on this specific noise realization.

In general we would like to do a much more detailed analysis with many different noise

realizations and many different injected sources. Indeed, this will be the subject of future

work, however; here we simply want to test the various steps of our algorithm, that is, the

search phase where we find the global maxima in the multi-dimensional parameter space,

the sampling phase where we obtain samples from the underlying posterior distribution,

and finally the evaluation phase where we compute the evidence and Bayes factors to

make choices about detection.

4.5.1 Searching for global maxima

Since we have little information about the SMBMB population, we want to carry out a

blind search of the parameter space making no assumptions about the underlying SMBMB

source parameters. Therefore, it is very important that our algorithm be able to quickly
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sampling process can begin. The trace plots of one SNR = 20 injection is shown in Figure

13 where we have plotted the measurable parameters (excluding the pulsar distance) as
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Figure 13 : Trace plots for the measurable parameters (the inclination angle, initial phase and polarization

angle are not well constrained for this realization) for an SNR=20 injection for the first 105 steps. In all

cases the black(green) line represents the injected parameters and the gray(blue) is the chain trace. We

can see that the parallel tempering scheme has allowed us to locate the global maxima of the log-likelihood

and all parameters within the first ∼ 6× 104 steps.

well as the log-likelihood as a function of chain iteration for the T = 1 chain. Here we

do not plot the polarization angle, initial phase, or inclination angle as they are not well

constrained by the data and contribute little to the overall log-likelihood for this case. We

can see from the figure that the algorithm has correctly found the true source parameters

within the first ∼ 6×104 MCMC iterations. We note that the true value of the frequency

is found quickly (within the first 104 steps of the algorithm) and we reach the true value

of the log-likelihood within the first 4× 104 steps. There are several ways that we could

improve this step such as choosing a more suitable starting jump proposal distribution

before starting adaptation or even starting adaptation sooner, however for the purpose

of this work we believe that this is sufficient as the algorithm can still collect ∼ 2 × 106

samples with 8 chains in about 4 hours running on a 2.7 GHz quad core MacBook Pro.
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algorithm such as an F -statistic Babak & Sesana (2012); Ellis et al. (2012c); Petiteau

et al. (2013) search prior to this Bayesian analysis. If any signal is detected, then we

will have a very good idea of the frequency of the GW source and can therefore seed our

MCMC algorithm much closer to the true value. Since the frequency contributes heavily

to the log-likelihood, it is likely that this could reduce the number of samples required

for this search phase by at least an order of magnitude.

4.5.2 Sampling and parameter estimation

For each injected source we run 4 serial chains all with 8 temperatures and starting

positions chosen at random from the prior, thereby assuring that our algorithm can

indeed locate the global maxima. Each serial chain was run for ∼ 1.5 × 106 iterations

and 25% of each chain was discarded as burn in. The resulting post burn-in chains were

then concatenated to form a single chain with ∼ 4.5× 106 posterior samples.
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Figure 14 : Marginalized 2-D posterior pdfs in the sky coordinates (θ, φ) and the log of the chirp mass

and distance (log M, log DL) for injected SNRs of 7, 14, and 20 shown from top to bottom. Here the

injected GW source is in the direction of the Fornax cluster with chirp mass M = 7 × 108M�. The

distance to the source is varied to achieve the desired SNR. Here the “×” marker indicates the injected

parameters and the solid, dashed and dot-dashed lines represent the 1, 2, and 3 sigma credible regions,

respectively.

Figure 14 shows marginalized 2-D posterior pdfs of the sky coordinates (θ, ϕ) and the
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(shown from top to bottom) for a source injected at the sky position of the Fornax cluster.

The “×” marker indicates the injected parameters and the solid, dashed and dot-dashed

lines represent the 1, 2, and 3 sigma credible regions, respectively. The first thing to note

from this figure is that the injected value lies well within the 1-sigma credible regions

in all three cases. We also note that since we have injected a relatively high mass and

high frequency GW, we can measure ḟ and therefore; we can can break the degeneracy

between chirp mass and distance as is seen in the plots on the right in the above figure.

Since we know the true injected values, it is possible to determine how much each pulsar

contributes to the log-likelihood function. For the aforementioned injection, four pulsars

contribute more than 1% to the likelihood function for the SNR 7 injection and only

three pulsars contribute more than 1% to the likelihood function for the SNR 14 and 20

injections. While this number does depend on the relative sky locations of the pulsars and

the GW source as well as the specific noise realization, it is also a very strong function

of the RMS of the noise in each pulsar (〈ln Λ〉 ∝ σ−2
RMS). In fact, we can see the results of

this in Figure 14 where there is a bit of multi modality in the posterior for sky position

because we essentially only have three and four baselines (detectors) for the SNR 7 and

14 and 20 cases, respectively.

This type of parameter degeneracy due to the small number of baselines differs from

previous parameter estimation studies Corbin & Cornish (2010); Sesana & Vecchio (2010);

Lee et al. (2011) where the simulated PTA consisted of a large number (20 or more) of pul-

sars all timed to the same accuracy. For this reason, quoted SMBHB parameter accuracies

that can be obtained from PTAs should be interpreted cautiously as it is extremely un-

likely that future era PTAs will even approach this ideal situation. To illustrate this point

we have also simulated an ideal data set of 10 pulsars drawn uniformly on the sky with 100

ns RMS in each with baselines of 10 years. We also chose distances drawn uniformly from

the range L ∈ [0.5, 1, 5] kpc with 10% uncertainties. We have then used the same injection

as in the simulated IPTA data at SNRs of 7, 14 and 20. The sky resolution Cutler (1998)

and fractional uncertainties on the chirp mass and distance for the simulated IPTA dataset

are ∆Ω = (2357.9, 122.2, 67.2) deg2, ∆M/M = (48.8%, 9.5%, 6.3%) and ∆DL/DL =
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responding values are ∆Ω = (1085.9, 23.7, 12.8) deg2, ∆M/M = (47.9%, 4.4%, 3.0%)

and ∆DL/DL = (79.7%, 15.9%, 13.2%), respectively. Again, these results are not robust,

in that we have only done one injection (with varying SNR) into one noise realization.

Nonetheless, it should be clear that our simulated IPTA data do not yield nearly as pre-

cise sky resolution or chirp mass and distance fractional uncertainties as an ideal data

set.

4.5.3 Evaluating the evidence

After we have carried out our parallel tempering MCMC search we can make use of

the different temperature chains to calculate the evidence integral via Eq. (2.7.6). Since

we have measured the noise parameters before conducting our search, we use the log-

likelihood ratio defined in Eq. (5.4.2) as our log-likelihood. By doing this we can compute

the Bayes factor comparing our GW and noise models simply by calculating the evidence

using the log-likelihood ratio. Figure 15 shows the log of the Bayes factor computed from
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Figure 15 : Log of the Bayes factor plotted against injected SNR for the same signal and noise realization.

The gray(green) horizontal line is the threshold in the log of the Bayes factor in which we can claim a

detection and the black(blue) points are the log Bayes factor calculated from thermodynamic integration.

thermodynamic integration for injections at different SNRs. Here we have done injections

into the same noise realization of out simulated IPTA data using the same GW source
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was run with 10 temperature chains for ∼ 2 × 106 iterations. In the figure, the green

horizontal line represents our threshold in the log of the Bayes factor of ln 100, above

which there is decisive evidence for a GW source (Jeffreys 1961) and the black(blue)

points are the computed log Bayes factor for each injection. There are two important

things to note. First, notice that the log of the Bayes factor is above the threshold for

injected sources with SNR ≥ 5 which agrees well with a frequentist interpretation of the

SNR as a detection statistic in gaussian noise, where 5-sigma is usually required for a

definitive detection. Secondly, as was discussed in Littenberg & Cornish (2009), the Bayes

factor is about unity for the zero to low SNR injections. This is because of the nature

of the question that we are asking. In this case we are asking “Is there evidence for any

continuous GW source in the data?”. Framed in this way, the result makes perfect sense

because a low SNR signal is nearly indistinguishable from pure noise, therefore the odds

of a low SNR GW are about 50/50 indicated by a Bayes factor of 1. If we were to ask the

question “Is there a continuous GW source with SNR ≥ 5 in the data?”, then we would

expect the Bayes factor to become much less than unity at low SNR.

4.6 Conclusions and future work

We have developed a robust MCMC algorithm that makes use of an Adaptive Metropolis

scheme and parallel tempering for use in PTA detection and parameter estimation of

single sources of GWs from SMBHBs. We have tested the algorithm on a fairly realistic

simulated IPTA dataset that has many of the features of real data including uneven

sampling, varying error bars and overall noise levels, poor pulsar distance measurement

uncertainty and varying data span. For comparison we have also run the algorithm on

ideal datasets, similar to those that have been considered in the literature. The algorithm

has shown to perform well in the three stages of our Bayesian analysis pipeline, namely the

search, sampling and evaluation phase. When seeded from a random point in parameter

space, the algorithm can quickly locate the global maxima through the use of parallel

tempering. Posterior samples are then collected efficiently through the use of Adaptive

Metropolis and special jump proposals in an extended parameter space. Finally, we have
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tempering and thermodynamic integration to calculate the Bayesian evidence.

From the few simulations and comparisons of realistic vs. ideal data done in this work

we can say that parameter estimation from current generation PTAs, counter to previous

work on the subject, is likely to suffer due to the fact that few pulsars contribute to the

total network SNR, resulting in a lower number of effective “detectors” than the number

of pulsars in the array. A much more detailed study of the parameter estimation problem

in current generation PTAs with more realistic noise models (including effects such as

time varying Dispersion Measure) is underway and will be the subject of a future paper.
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Chapter 5

NANOGrav Limits on Gravitational

Waves from Individual Supermassive

Black Hole Binaries in Circular

Orbits

“Which side are we on? We’re on the side of the demons, chief.
We’re evil men in the gardens of paradise, sent by the forces of
death to spread devastation and destruction wherever we go.”

— Colonel Saul Tigh, Battlestar Galactica: Precipice

This chapter is based on:
NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole
Binaries in Circular Orbits
NANOGrav Collaboration
arXiv 1404:1267 (2014), Submitted to ApJ

5.1 Introduction

The direct detection of Gravitational Waves (GWs) is a major goal of experimental physics

and astrophysics. One of the most promising means of detecting GWs is through the pre-

cise timing of an array of millisecond pulsars (MSPs). PTAs are most sensitive to GWs

with frequencies in the nanohertz regime (i.e., 10−9 Hz – 10−7 Hz). The community has

thus far focused mostly on stochastic backgrounds produced by a variety of sources; how-

ever, sufficiently nearby individual SMBHBs may produce detectable continuous waves
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Loeb 2003; Sesana et al. 2009; Sesana & Vecchio 2010). Several upper limits have been

placed on the strength of the stochastic background (Kaspi et al. 1994; Jenet et al. 2006;

van Haasteren et al. 2011; Demorest et al. 2013; Shannon et al. 2013) and continuous

waves (Jenet et al. 2004; Yardley et al. 2010) but no successful detection has yet been

made.

In this chapter we will use current-generation frequentist (Ellis et al. 2012c) and

Bayesian (Ellis 2013) data analysis pipelines to compute upper limits on the strain am-

plitude of continuous GWs from SMBHBs in circular orbits. We make use of the 5-year,

17 pulsar data set obtained as part of the NANOGrav project (Demorest et al. 2013). In

Section 5.2 we briefly review the radio observations and timing analysis. In Section 5.3

we describe the signal model used to describe the continuous GWs in the PTA band. In

Section 5.4 we describe, in detail, the time domain likelihood function, the noise model,

and the frequentist and Bayesian search pipelines. In Section 5.5 we apply our search

and upper limit pipelines to the NANOGrav dataset and report our findings. In section

5.6 we summarize our results. In the Appendices we derive the form of the frequency

evolution of SMBHBs, and give full details on the computational implementation of our

Bayesian code.

5.2 Observations and Timing Analysis

The observational data used for this analysis are the same as those presented by Demor-

est et al. (2013); the reader is referred to that paper for a detailed description of the

observations and timing analysis. Here we present a brief review of the relevant features

of the data set. The timing data used here were acquired during 2005–2010 using two

radio telescopes, the 305 m Arecibo telescope, and the 100 m Robert C. Byrd Green Bank

Telescope (GBT). A total of 17 pulsars (8 at Arecibo, 10 at the GBT, with J1713+0747

observed by both telescopes) were monitored using a typical observational cadence of 4–6

weeks between sessions. At each observing epoch, every pulsar was observed using two

separate receiver systems operating at widely separated radio frequencies ranging from

327 MHz to 2.3 GHz. The typical observation length was 30 minutes per pulsar per
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the GBT) pulsar backend systems (Demorest 2007). These systems processed a typical

radio bandwidth of 64 MHz using real-time coherent dedispersion and pulse period fold-

ing, resulting in 2048-bin full-Stokes pulse profiles averaged over 1–3 minutes in 4 MHz

channels.

Pulse profile calibration, integration, and time of arrival (TOA) determination was

done using standard techniques via the PSRCHIVE1 software package (Hotan et al. 2004).

For each pulsar all profiles in a given epoch were integrated in time to form a single set of

profiles across radio frequency. From these, TOAs were measured separately in each 4 MHz

radio frequency channel. This resulted in a set of ∼20–30 multi-frequency TOAs at each

epoch, or ∼500–2000 TOAs total for each pulsar over the full data set. Before searching

for the presence of GW in these data, the rotational, orbital, astrometric and interstellar

medium properties specific to each pulsar–effects collectively known as the timing model,

must first be determined from the TOA data. For this we analyzed the TOAs using

both the TEMPO2 and TEMPO23 (Hobbs et al. 2006) timing software packages and

obtained identical results with both. Notable features of the timing models used here

include: Spin frequency and spin-down rate, but no higher frequency derivatives, were fit

for all pulsars; all five astrometric parameters (sky position, proper motion and parallax)

were fit for all pulsars4; time-variable dispersion measure (DM); was included by fitting

foran independent DM value at each epoch, using the multi-frequency TOAs;5 intrinsic

profile shape evolution with frequency was included as a constant-in-time offset for each

frequency channel, and Keplarian and relativistic orbital elements, as appropriate for

pulsars in binary systems. All TOA data and final timing solutions for this data set are

publicly available online.6

1http://psrchive.sourceforge.net
2http://tempo.sourceforge.net
3http://tempo2.sourceforge.net
4Parallax was not fit for in PSR J1640+2224.
5Models for pulsars J1853+1308, J1910+1256 and B1953+29 did not include DM variation measure-

ment as only single-frequency data were available for these.
6http://data.nanograv.org
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Here, again, we will use the signal model presented in chapter 1 including both the

earth and pulsar terms as well as the full frequency evolution. From the signal model

presented above, we see that our parameter space is 8 dimensional and the continuous

wave parameter space vector is

~λ0 = {θ, ϕ,Φ0, ψ, ι,M, dL, ω0}. (5.3.1)

However, because typical pulsar distance uncertainties are on the order of tens of percent

(Verbiest et al. 2012), in order to attain phase coherence in our search algorithm, we must

allow the pulsar distance to vary as a search parameter as well. Henceforth, we will adopt

the notation that ~λα = {~λ0, Lα}, where Lα is the distance to the αth pulsar, in order

to denote the fact that the pulsar distance is a search parameter. The above parameter

set represents the default parameters used in our search; however, when setting upper

limits we wish to parameterize the upper limit in terms of the inclination averaged strain

amplitude

h0 = 4

√
2

5

M5/3(πfgw)2/3

dL
. (5.3.2)

Since the luminosity distance, dL is only a scale parameter we use h0 as a free parameter

in the waveform instead of luminosity distance when computing upper limits.

5.4 Search Techniques

5.4.1 Likelihood Function for PTAs

For this work we will use the marginalized likelihood of Eq. (2.4.14) and assume that

the residuals between pulsars are uncorrelated. In other words, we are assuming that

the stochastic GW background will be negligible compared to the intrinsic noise in each

pulsar. In general this is not likely to be a good assumption when we would expect a

detection of a single GW source. Furthermore, terrestrial clock errors (Hobbs et al. 2012)
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tions between residuals from different pulsars, with however different angular correlation

properties on the sky than are expected from GWs. The effects of omitting the corre-

lations in the likelihood function are unknown and will be the subject of future work.

Under these assumptions, the likelihood function for the full PTA can be written as

p(δt|~λ) =

Npsr∏

α=1

p(δtα|~λα), (5.4.1)

where δtα and ~λα and the residuals and model parameters for the αth pulsar, respectively

and ~λ is the full CW parameter vector including pulsar distances for all pulsars. In cases

where we fix the noise values, we can write the log-likelihood ratio of a model with a

single continuous GW to a model with just noise as

ln Λ =

Npsr∑

α

[(
δtα|s(~λα)

)
− 1

2

(
s(~λα)|s(~λα)

)]
, (5.4.2)

where the inner product between two time-series x and y is

(x|y) = xTG(GTCG)−1GTy. (5.4.3)

In the remainder of the chapter we will refer to the signal-to-noise ratio in the following

form

ρ =
√

2〈ln Λ〉 =

(
Npsr∑

α

(
s(~λα)|s(~λα)

))1/2

, (5.4.4)

where the angle brackets denote the expectation value over many noise realizations.

5.4.2 Noise Model

In section 2.5 we have derived a general parameterized noise model for PTA data analysis.

Here we usea slightly simplified variant of that noise model. Previous Bayesian analysis

schemes (van Haasteren et al. 2009a; van Haasteren & Levin 2010; van Haasteren et al.

2011; Ellis et al. 2012c; van Haasteren & Levin 2013; van Haasteren 2013; Ellis et al.

2013; Ellis 2013) have used a power-law red noise model and an EFAC (constant mul-

tiplier on the TOA uncertainties) and EQUAD (additional Gaussian white noise added

7Note that current uncertainties in the ephemerides are small enough that they will likely not pose

any problems for GW analyses.
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matrix of the form

C = E2W +Q2I + Cred(Ared, γred), (5.4.5)

where E is the EFAC parameter, W = diag{σ2
i }, with σi the errorbar on the ith TOA,Q is

the EQUAD parameter and Cred is an analytic expression of the red noise amplitude Ared

and spectral index γred. It is worth noting that we use no EFAC or EQUAD parameters

in our pulsar timing model fit but instead include them directly in our noise model.

The EFAC is simply a parameter that quantifies any additional uncertainty in the TOA

uncertainties and the EQUAD parameter quantifies any additional white noise that is

not related to the formal TOA uncertainties. In principle, a different EFAC value should

be used for each pulsar timing backend as this parameter is related to intrinsic receiver

noise; however, in this 5-year NANOGrav dataset, only one backend per telescope was

used8. Therefore, we are justified in only using one EFAC parameter per pulsar. This

noise model is quite general and works well for many pulsars; however, the size of the

matrices is quite large (on the order of 103 × 103) and inversion is a large bottleneck

in the analysis pipelines. Furthermore, current NANOGrav observing schemes produce

large sets of multifrequency observations that are essentially simultaneous. One may

be tempted to simply perform a weighted average of the TOAs and work with the new

reduced datasets but in the Bayesian scheme we must marginalize over the timing model

parameters analytically and it is unclear how to carry out this process for epoch-averaged

TOAs. Because of this, we have developed a framework to essentially work backward

from the marginal likelihood to derive a nearly exact averaging scheme. First we re-write

our noise covariance matrix

C = N + U C̃UT , (5.4.6)

where C̃ is a q×q reduced covariance matrix with q the number of epochs9 in our dataset,

N is a white noise covariance matrix of the EFAC and EQUAD terms, and U is the

“exploder” matrix that maps epochs (columns) to the full set of TOAs (rows). If we now

8PSR J1713+0747 is observed at both Arecibo and GBT; however, we find that there is very little

difference in the measured EFAC parameters for the two telescopes.
9Here we have defined an epoch to be one day.
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p(δt|~φ,~λ) =
exp

[
−1

2

(
(δt− s)T Ñ−1(δt− s)− dTΣ−1d

)]

√
(2π)n−m det(C̃) det(GTNG) det(Σ)

, (5.4.7)

where we have used the Woodbury Lemma10 to compute the inverse and determinant

of C, Ñ−1 = G
(
GTNG

)−1
GT , d = UT Ñ−1(δt − s), and Σ =

(
C̃−1 + UT Ñ−1U

)
. Note

that d here are essentially daily averaged residuals. For NANOGrav datasets the number

of epochs per pulsar is on the order of 30–100, while the total number of TOAs per

pulsar is on the order of 103, thus the inversions (here N is diagonal and Ñ−1 can be

pre-computed, thus the only dense matrix inversion is Σ−1) required in this likelihood

function scale as q3 as opposed to n3, resulting in computational speedups of several

orders of magnitude. Furthermore, the epoch-averaged covariance matrix C̃ can take on

several forms depending on the red noise model used; however, as long as it is a slowly

varying function of the TOAs (i.e., a truly red process) then this formalism is completely

valid.

In order to attain further computational speedups and to gain more control over the

low frequency component of our noise model we make use of the methods described in

Lentati et al. (2013b), but now applied to a single pulsar instead of the full PTA. This

method relies on explicitly splitting up the red and white components of the residuals, so

that the residuals are now written as

δt = Mδξ + nwhite + nred + s, (5.4.8)

where nwhite and nred are the white and red components of the residuals, respectively. It

is possible to expand the red noise piece in a Fourier series

nred =

Nmode∑

j=1

[
aj sin

(
2πjt

T

)
+ bj cos

(
2πjt

T

)]
= Fa, (5.4.9)

where a is a vector of the alternating sine and cosine amplitudes, T is the total time span

of the data, and F is a NTOA×2Nmode matrix with alternating sine and cosine terms with

Nmode the number of frequencies used. Now, we assume that the underlying ensemble

average red noise process is wide-sense stationary and can be completely described by a

10(A+DBET )−1 = A−1−A−1D(B−1+ETA−1D)−1ETA−1 and |A+DBET | = |A||B||B−1+ETA−1D|
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components

ϕij = 〈aaT 〉ij = diag({ϕi}), (5.4.10)

where the elements of ϕ, denoted {ϕi} are the coefficients of the theoretical power spec-

trum of the red noise process in the residuals. If the red noise process is wide-sense

stationary, then this relation is always true irrespective of the sampling as all information

about the uneven sampling here comes from the Fourier design matrix F . Thus, we can

write the covariance and epoch-averaged covariance matrices, respectively, as

C = N + FϕF T (5.4.11)

C̃ = F̃ϕF̃ T , (5.4.12)

where F̃ is a q×Nmode matrix and is constructed in the same manner as F but the epoch-

averaged TOAs are used as opposed to the full set of TOAs. As is done in Lentati et al.

(2013b), it is possible to treat each diagonal element of ϕ as a free parameter; however,

for this work we choose to parameterize it by a power-law

ϕi =
1

T

A2
red

12π2

(
fi
fyr

)3−γred
f−3
i , (5.4.13)

where fi is the ith Fourier frequency assuming Nyquist sampling. In general, any Fourier

based method with finite length datasets and especially with irregular sampling will suffer

from spectral leakage whereby power from the lowest frequencies will leak into the higher

frequencies. In effect, this makes Fourier based methods sensitive to the low-frequency

cutoff. However, it was shown in van Haasteren & Levin (2013) that by including the

effects of the timing model (specifically the quadratic spin-down in this case) in our

analysis acts as a window function that fully removes any sensitivity to the low-frequency

cutoff, thereby also removing any spectral leakage. We have done extensive simulations

to test this notion and have found no evidence for spectral leakage and no bias in red

noise parameter estimation and waveform reconstruction.

In the course of our single pulsar noise analysis (Ellis et al. 2014) we found that

the addition of an extra white noise parameter was needed to accurately describe the

data. This new white noise term incorporates a correlation among frequency channels
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this white noise term accounts for epoch-to-epoch fluctuations as opposed to fluctuations

within an epoch. We defer to another paper the inclusion of pulse-jitter noise from pulsar

magnetospheric activity but point out that our inferred extra term may be the same as

jitter noise known to be present in all well-studied pulsars (Cordes & Shannon 2010).

This parameter is quite easy to incorporate as it is simply an EQUAD like parameter in

the epoch-averaged sense, that is

J = UJ̃UT = J 2UIqUT , (5.4.14)

where J is our frequency correlated EQUAD parameter and Iq is the identity matrix in

the epoch-averaged space. With this, we have our final noise model with a total covariance

matrix of

C = N + U
(
F̃ϕF̃ T + J 2Iq

)
UT , (5.4.15)

and noise parameter vector

~φ = {E,Q,J , Ared, γred}. (5.4.16)

Throughout the remainder of the chapter, this noise model is always used for all pulsars.

5.4.3 Fp-Statistic

The Fp-statistic was first derived in Ellis et al. (2012c) (hereafter ESC12) as a “total-

power” frequentist detection statistic. First we define the following harmonic basis func-

tions:

B1
α(t) =

1

ω
1/3
0

sin(2ω0t) (5.4.17)

B2
α(t) =

1

ω
1/3
0

cos(2ω0t), (5.4.18)

where, again, ω0 is the orbital angular frequency of the SMBHB. Following ESC12, the

Fp-statistic is written as

2Fp =
M∑

α=1

P i
αQ

α
ijP

j
α, (5.4.19)

where we have assumed Einstein Summation notation over latin indices, P i
α = (δt|Bi

α(t)),

Qα
ij = (Bα

i |Bα
j ) and the formal sum is over all pulsars in the array. An intuitive way to
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Figure 16 : Histogram of Fp-statistic values (top panel) across all independent frequencies (black(blue)

histogram) and for 100,000 realizations of simulated data with noise parameters measured from the real

data (gray(green) histogram). The red dashed curve is the probability distribution function for a chi-

squared distribution with 34 (i.e., 2Npsr) degrees of freedom. The lower panel shows the p-value from a

KS test comparing the Fp-statistic for each pulsar to a chi-squared distribution with 2 degrees of freedom.

The solid line represents the 3-sigma threshold for the p-value.

think of this statistic is a weighted (by the noise power spectral density) sum of the power

spectrum of the residual data done in the time domain by making use of a harmonic time

domain basis. It was shown in ESC12 that 2Fp follows a chi-squared distribution with

2Npsr degrees of freedom and non-centrality parameter ρ2 such that

〈2Fp〉 = 2Npsr + ρ2. (5.4.20)

Figure 16 shows the distribution of the Fp-statistic (top panel) for both real and simulated

data as well as as a p-value test (bottom panel) for each pulsar, where we compare the

single-pulsar Fp distribution to the expected chi-squared distribution. To compute the

Fp-statistic, we have used the maximum a-posteriori noise values obtained in a previous

single-pulsar noise analysis to construct the noise covariance matrix. Since we do not have

independent realizations of our data, we compute the Fp-statistic for each independent11

frequency bin and then construct a histogram of the results. If our noise model is a

good description of the true noise in our data and there is no GW present in the data

11Note that the frequencies are not completely independent since our data are irregularly sampled.

The frequency bins were chosen here assuming a cadence of two observing sessions per month.
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109then this distribution should follow the correct chi-squared distribution. We see from

Figure 16 that the Fp-statistic values do indeed follow a chi-squared distribution with

2Npsr degrees of freedom. The black(blue) curve in the top panel of Figure 16 shows the

aforementioned histogram along with the chi-squared distribution in the dashed gray(red)

line. The p-value that results from a Kolmogorov-Smirnov (KS) test comparing the 2Fp
and chi-squared (with 34 degrees of freedom) distributions is 0.33 showing good agreement

between our data and the expected chi-squared distribution. As a cross-check, we have

also simulated 100,000 datasets with the measured noise parameters and have evaluated

the Fp-statistic for each. This distribution is plotted as a gray(green) histogram in the

figure and it is obvious that this distribution follows a chi-squared distribution with

34 degrees of freedom nearly perfectly. We have also performed a similar test but for

each pulsar separately. In the lower panel of Figure 16 we carry out the same KS-test

mentioned above but now compute the Fp-statistic values for each pulsar individually and

then compare to a chi-squared with 2 degrees of freedom. The solid line corresponds to

the p-value at which we should reject the null hypothesis that the two distributions are the

same with 99.7% confidence. We see that with the exception of one pulsar, J1640+2224,

all others lie above this threshold value. This indicates that our noise model for all pulsars

except J1640+2224 provide a good description of the true noise in the dataset. Better

noise models for this pulsar are currently being explored (Ellis et al. 2014) but since our

full 17-pulsar F -statistic distribution is totally consistent with the expected chi-squared

distribution we just use the standard noise model described in Section 5.4.2.

For the detection problem, we are interested in the false-alarm-probability (FAP),

that is, the probability that a measured value Fp exceeds a given threshold Fp,0 when

no signal is present. From ESC12, the probability distribution of Fp when the signal is

absent is

p0(Fp) =
Fn/2−1
p

(n/2− 1)!
exp(−Fp), (5.4.21)

where n is the number of degrees of freedom (2Npsr in this case). The corresponding FAP

is then written as

PF (Fp,0) =

∫ ∞

Fp,0
p0(Fp)dFp = exp(−Fp,0)

n/2−1∑

k=0

Fkp,0
k!

. (5.4.22)
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a trials factor such that the resulting FAP for the search is

P T
F (Fp,0) = 1− [1− PF (Fp,0)]Nf , (5.4.23)

where Nf is the number of independent frequencies. For this work we place our detection

threshold on Fp such that the corresponding FAP is less than 10−4. The results of

performing this search on the 5-year NANOGrav dataset will be presented in the next

section.

5.4.4 Bayesian Method

The Bayesian search pipeline in this work is very similar to that of Ellis (2013) (here-

after E13). Here we use an MPI enabled Parallel-Tempered Markov Chain Monte-Carlo

(PTMCMC) sampler12. In this work we use two “modes” of operation for the Bayesian

search. The first is the most general in which we evaluate the full likelihood function

of Eq. (5.4.7) and allow both the GW parameters, ~λ, and the noise model parameters,

~φ to vary simultaneously. In principle, this is the more desirable setup as it allows the

uncertainty in our noise model to propagate into the measured GW parameters and also

accounts for any correlations between the noise and GW parameters. This mode does

require significantly more computational power as the number of search parameters in

the MCMC is quite large. The total parameter space consists of 8 GW parameters, Npsr

pulsar distances, and 5×Npsr noise parameters; this comes to 110 parameters for the full

17-pulsar array.

The second mode is when we fix the noise parameters to their maximum a-posteriori

values obtained from a previous single pulsar analysis. All previous GW searches for

single sources have been performed in this manner (Jenet et al. 2004; Yardley et al.

2010; Babak & Sesana 2012; Ellis et al. 2012c; Petiteau et al. 2013; Ellis 2013) which

is justified if the noise model only contains white noise and the GW signal present in

any single dataset is weak. If the noise model contains only white noise, there will be

little to no correlation between the GW parameters and the noise parameters, and if the

12https://github.com/jellis18/PAL
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some evidence of red noise in our pulsars and because of the highly varying noise levels

among pulsars, it is likely that a detectable source would be seen in the best timed pulsars

individually. Therefore, this type of Bayesian analysis is not robust and could possibly

lead to biased results; nonetheless, we will carry out this mode for comparison purposes

in this study. Note that we will have the same problem with the Fp-statistic. Possible

methods to ameliorate this problem in fixed-noise searches are being explored and will

be the subject of a future paper.

Priors

In a Bayesian analysis, especially when using parallel tempering and thermodynamic

integration, it is very important to choose reasonable priors so that we are not exploring

areas of parameter space that have been ruled out by previous experiments. We choose

isotropic priors on all angular parameters and uniform priors in the log of the chirp mass

withM∈ [108, 1010] M�, luminosity distance with dL ∈ [1, 104] Mpc, and frequency of the

GW with fgw ∈ [6×10−9, 4×10−7] Hz. We impose an additional condition on the average

strain amplitude such that h0(M, dL, fgw) ≤ href(fgw/f0)2/3, where href = 1 × 10−13 and

f0 = 10−8 Hz. This value is chosen so that the maximum strain is well above the level

of detection. Essentially this is a cheap way to impose a correlated prior on chirp mass,

luminosity distance, and GW frequency. The normalization is computed through Monte

Carlo integration. For the pulsar distance prior we use the current electromagnetic (EM)

measurements either from timing parallax or Very Long Baseline Interferometry (VLBI)

corresponding to the best measured values taken from Verbiest et al. (2012) (10 pulsars)

if available, otherwise, we use the values from the Australia National Telescope Facility

(ATNF) pulsar catalog (Manchester et al. 2005)1 which have distances based on dispersion

measure and the NE2001 Galactic electron-density model (Cordes & Lazio 2002, 2003).

For pulsars without parallax distances we assume a 20% uncertainty on the distance.

1http://www.atnf.csiro.au/people/pulsar/psrcat/
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p(~L) =

Npsr∏

α=1

1√
2πσ2

α

exp

(
−(Lα − LEM

α )2

2σ2
α

)
, (5.4.24)

where LEM
α is the best measured distance for the αth pulsar and σα is the 1-sigma un-

certainty on that distance measurement. In principle it would be more correct to use

a Gaussian prior for the parallax, which is proportional to L−1. If the variance on the

parallax is quite large then the corresponding prior on distance will differ significantly,

namely it will have a long tail towards higher distances. However, for the pulsars used

in this analysis, the distance uncertainty is small enough that the two prior distributions

are effectively the same and we are safe in using a Gaussian prior on the pulsar distance

itself; however, for future analyses we will move to Gaussian priors in L−1. As was noted

in E13, constructing an efficient jump proposal for the pulsar distance is quite difficult.

See Appendix 5.B for the implementation used in this work.

For our noise parameters, we use priors that are uniform in the EFAC in the range

[0.5, 5], uniform in the log of the EQUAD with EQUAD ∈ [10−9, 10−5] s, uniform in the

log of the jitter value with the same range as the EQUAD, uniform in the log of the

red noise amplitude with Ared ∈ [10−18, 10−11], where the amplitude is in GW units, and

uniform in the red noise spectral index with γred ∈ [1, 7]. We impose a further prior on

the red noise such that the variance σ2
red is less than the unweighted standard deviation

of the pulsar timing residuals, where

σred =

∫ ∞

1/T

dfP (f) = 2.05
1√

γred − 1

(
Ared

10−15

)(
T

1 yr

) γred−1

2

ns, (5.4.25)

with T the total observation time and P (f) the power spectrum of the red noise. This

prior essentially restricts the model from considering red noise dominated residuals, which

is a very good approximation (Perrodin et al. 2013a; Ellis et al. 2014). This prior is chosen

because it leads to much more computationally efficient runs by allowing us to run fewer

high temperature chains in the Thermodynamic Integration scheme (See section 2.7.1 for

more details). In principle this red noise prior is illegal in the sense that it uses the data

(i.e., the variance of the residuals); this prior restricts access to an area of parameter

space that is not supported by the likelihood function. That is, by omitting this area
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Figure 17 : Fraction of SNR that each pulsar contributes (black(blue) points). We see that PSR

J1713+0747 dominates the total SNR. The gray(green) curve is a simple 1/σα scaling which matches

the measured SNR values quite well showing that the overall variance of the noise for each pulsar is the

dominating factor in determining the overall SNR.

of parameter space the evidence calculation for each model, H1 and H0, will be biased

slightly low but, the likelihood function evaluated at this area of parameter space is

essentially zero, and this slight bias will be negligible.

5.5 Results

In this section we report the results of our frequentist and Bayesian searches, provide

verification of the pipeline on injected signals and report on several upper limits.

5.5.1 Verification

First, it is interesting to determine how much each pulsar in the 17-pulsar array will

contribute to the overall SNR (signal-to-noise ratio) when a GW is present. In Figure

17 we plot the fraction ρα/ρtotal, where ρα is the single pulsar SNR, for each pulsar in

the array. To compute this fraction we simulate 5000 SNR = 10 GW realizations (with

parameters drawn from isotropic distributions in all angles and distributions uniform in
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from Eq. (5.4.4). The black(blue) points in the plot show the mean and standard deviation

of the aforementioned ratio for each pulsar and the gray(green) curve is a simple naive

scaling of 1/σ2
α, where σα is the weighted RMS of the αth pulsar’s TOA uncertainties.

It is obvious that J1713+0747 contributes more than 55% of the SNR on average, and

PSRs J1909−3744, J0030+0451, and J0613−0200 contribute ∼ 10% on average. As we

see from the gray(green) curve, this is very consistent with the overall scaling with the

inverse of the variance of the noise; however, PSRs J0030+0451 and J0613−0200 carry a

higher percentage because they are located opposite to the bulk of other pulsars on the

sky, and therefore will contribute more to the SNR for GWs coming from that side of

the sky due to the antenna pattern response. This calculation does not mean that we

advocate only timing the pulsars with the highest timing precision. Although many of the

lower timing precision pulsars do not help with continuous GW detection or parameter

estimation, they are essential for detection and parameter estimation of a stochastic GW

background (see e.g., Siemens et al. 2013).

The fact that one pulsar dominates the total SNR means that it will be harder to

make a confident GW detection as we require the same GW signal (with quadrupolar

correlations) to be present in all pulsars. In other words, if the GW is only “seen” in

one or two pulsars then it is hard to distinguish it from some other effect due to the

pulsar timing model, ISM effects or some other systematic effect. This also implies the

need to run a Bayesian analysis where both the noise and GW parameters are allowed

to vary simultaneously. This does not mean that a continuous GW would not be a

valid interpretation of a loud sinusoidal signal in one pulsar, only that statistically we

do not have enough information to confidently claim a detection. Furthermore, if we

did have a loud detectable signal, parameter estimation would be quite poor with the

current NANOGrav PTA as there would be large degeneracies in the sky location (due

to the small effective number of detector baselines), making sky localization and binary

orientation estimates very poor. However, NANOGrav is currently timing 43 pulsars

with microsecond or better precision. Also, new ultra-wideband receivers (DuPlain et al.

2008) have increased timing precision by a factor of ∼1.7 for many of the pulsars in this
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the limitations we have with the 5-year data set.

Despite the potential limitations discussed above, we verify the efficacy of our pipeline

by running both the frequentist and Bayesian pipeline on a synthetic dataset with an

injected GW source. To create the synthetic dataset we first compute the residuals of our

17 NANOGrav pulsars using the tempo2 (Hobbs et al. 2006) package. Next we subtract

these residuals from the site arrival times, thereby producing a new set of arrival times

that match our timing model perfectly. To each set of idealized TOAs we then add a

Gaussian noise process with the same characteristics as those measured in the real data,

and a GW signal using the fully evolving signal model. We then use these new TOAs

to produce a set of synthetic residuals. For this simulation we have chosen to inject a

signal with SNR 10 and parameters ~λ = {θ = 2.07, ϕ = 5.4, fgw = 4 × 10−8 Hz,M =

5× 108M�, dL = 1.0 Mpc, ψ = 0.78, ι = 0.26,Φ0 = 0.53}.
The Fp-statistic pipeline was run on this synthetic dataset. Since we are treating this

injection as if it were a true blind search, we must first run a single-pulsar noise analysis to

determine the maximum a posteriori noise parameters; however, since a strong continuous

GW and red noise will be covariant we have included a single frequency sinusoid as part of

our noise analysis for each pulsar. This is implemented by simply adding a free amplitude

and frequency parameter to the noise model discussed above. While this may appear to

be special treatment for the injected signal, we have run the same noise model on the

real data and find no evidence for any sinusoidal features. After we have obtained the

maximum a-posteriori noise parameters (not including the sinusoid parameters), we use

these values to construct the noise covariance matrix for use in the Fp-statistic as well as

the fixed-noise Bayesian search. By performing the noise search with an included sinusoid

but not including it in our noise covariance matrix in the subsequent GW analysis we are

sidestepping the problem of the GW being absorbed into red noise parameters.

We have carried out this analysis and the results are shown in Figure 18 where we plot

Fp vs. GW frequency when using the measured noise values (black) and the true injected

noise values (grey). The vertical dashed line indicates the injected frequency and the

horizontal dashed line represents our detection threshold corresponding to a FAP of 10−4.
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Figure 18 : Fp-statistic evaluated over the frequency range fgw ∈ [1/T, 3.3 × 10−7] Hz. The horizontal

dashed line corresponds to our detection threshold of FAP = 10−4 and the vertical dashed line denotes

the injected frequency. The black and gray curves are the Fp-statistic values when using the measured

and true noise parameters, respectively. See text for more details.
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Nf = 324, resulting in a total FAP of 1.6×10−8 which is a decisive detection. The number

of independent frequencies is difficult to calculate when we are using many datasets with

very irregular sampling. In this work we have chosen Nf = 324 as this corresponds

to fgw ∈ [1/T, 3.3 × 10−7] and ∆fgw = 10−9 Hz. The upper limit on frequency was

chosen because our approximate observing cadence is (2.5 weeks)−1 and the frequency

spacing was chosen by imposing the condition that the autocorrelation function of Fp
when no signal is present drops to half of its maximum value at that frequency lag. This

analysis shows us that we can indeed detect a continuous GW if it is present in our

data by conducting a fully blind search; however, we also see that our results will not

be conclusive as there are several frequencies at which the FAP is above our threshold

value. From comparison with true-noise case, we see that the uncertainty (and residual

correlations between GW and noise parameters) in the noise parameters can lead to

confusing results. This again, is mostly due to the fact that our sensitivity is dominated

by a small number of pulsars. Because of this, we caution against using a fixed-noise

method to make final detection statements but instead advocate these methods as a first

round in a suite of analyses.

Both Bayesian pipelines (with and without varying noise parameters) were run on this

synthetic dataset. For both runs we have used PTMCMC and thermodynamic integration

as discussed in section 2.7.1. Due to the large parameter spaces when using the full GW

and noise model, we have chosen to use only the pulsars that contribute more than

1% to the injected SNR, resulting in 6 pulsars, J1713+0747, J1909−3744, B1855+09,

J0030+0451, J0613−0200, and J1012+5307. Here we use the same noise parameters as

mentioned above for our fixed-noise search. Even though these estimates are different

from the true noise parameters, we nonetheless achieve a log-Bayes factor of 27.4 for

the fixed-noise search (a log-Bayes factor greater than 5 is considered decisive evidence).

However, as we mentioned earlier, we should not totally trust this level of evidence as it

does not fully incorporate our uncertainty in the noise model. When we run an analysis

where we allow the noise and GW parameters to vary simultaneously we only achieve

a log-Bayes factor of 5.35. While still decisive, this search is much less sensitive to the
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not one can trust a real GW detection candidate. Of course these results could change

depending on the noise realization or GW parameter combinations. A more detailed study

of this is warranted but beyond the scope of this chapter. Nonetheless, the large spread

of overall noise levels in modern PTAs will most likely make the confident detection of a

continuous wave GW very difficult.

5.5.2 Search Results

First we will discuss the results of the Fp-statistic search on the real 17-pulsar NANOGrav

data. To carry out the analysis we have computed Fp for many frequencies with fgw ∈
[1/T, 3.3×10−7] Hz. These frequencies were chosen based on the fact that the approximate

cadence is 2.5 weeks−1. The results of this search are shown in Figure 19 where the solid

black line is the value Fp at each frequency, the dotted, dash-dotted, and dashed lines are

the value of Fp corresponding to a 1.0%, 0.5%, and 0.1% FAP, respectively, where these

values are calculated from Eq. (5.4.22). Furthermore if we maximize Fp over frequencies

then the total FAP, accounting for the trials factor Nf is very nearly 1, indicating that we

should fail to reject the null hypothesis (no visible GW signal) with very high confidence.

We will now briefly discuss the results of both Bayesian searches. To carry out this

analysis we have run our PTMCMC and computed the Bayes factors for each case. In

the first case we allow the noise parameters and GW parameters to vary and explicitly

compute the Bayesian evidence via thermodynamic integration for a model with a GW

and noise and a model with just noise. In the second case, we fix the noise parameters to

the maximum a-posteriori obtained from single pulsar analyses and only allow the GW

parameters to vary. As mentioned above, the second case is not reliable since there is

likely to be correlations between the GW and noise parameters; however, we give the

results of both searches for completeness. As above, in the case of a true continuous GW

signal we can get very different results from a fixed-noise versus a varying noise search.

However, in our case the log-Bayes factor for searches with and without varying noise

parameters is −0.55 and −0.1, respectively, both indicating that there is no evidence for

a continuous GW and a model consisting of noise is preferred. We further note that this
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Figure 19 : Fp-statistic evaluated over the frequency range fgw ∈ [1/T, 3.3×10−7] Hz. These frequencies

were chosen based on the fact that the approximate cadence is 2.5 weeks−1. The dashed, dash-dotted,

and dotted lines represent the value of Fp that gives a FAP of 0.1%, 0.5%, and 1%, respectively. Here

we note that there is no evidence for a detection and the data are consistent with the null hypothesis.

is completely consistent with our frequentist analysis.

5.5.3 Upper Limits

In this section we will outline the procedures used to compute both the frequentist and

Bayesian upper limits on the strain amplitude, h0. First we wish to state that an x%

upper limit on the strain amplitude does not mean that we would have detected a signal

with that amplitude with x% confidence, it simply means that the true value of the

amplitude is less than the upper limit with x% probability. In the following sections we

will discuss the mathematics of upper limit computation in the frequentist and Bayesian

frameworks, and then we will lay out our computational procedure.

Frequentist Approach

From a frequentist viewpoint, the data are random while the signal parameters are fixed

but unknown (i.e., we construct probability distributions for the data, or rather some
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the data are fixed and the signal parameters are uncertain (i.e., we construct probability

distributions of the signal parameters given a dataset). From the above statement it

then follows that frequentist upper limits are derived from integrating the probability

distribution of some statistic of the data (the Fp-statistic in this case) at a fixed value

of the parameter of interest, and Bayesian upper limits are derived from integrating the

probability distribution of the parameter of interest for the given data set.

More formally, the probability distribution of the Fp-statistic given a value of the

strain amplitude h0 is

p(Fp|h0) =

∫
p(Fp|h0, λ̃,n)p(λ̃)p(n) dλ̃ dn, (5.5.1)

where λ̃ = {θ, ϕ, fgw,M, ι, ψ,Φ0} is a reduced parameter space vector, p(λ̃) is the sam-

pling distribution of λ̃ (these sampling distributions are identical to the prior probability

distributions in the bayesian case), n is a noise timeseries drawn from the distribution

p(n) =
1√

det 2πC
exp

(
−1

2
nTC−1n

)
, (5.5.2)

with C the covariance matrix of the noise in the pulsar timing residual timeseries, and

p(Fp|h0, λ̃,n) is the probability distribution function for the Fp statistic for given values

of h0 and λ̃ and a given noise realization n. An upper limit on h0 at confidence level α is

then computed by solving the equation

α =

∫ ∞

Fp,0
p(Fp|h0) dFp

=

〈
1

N

N∑

i=1





1 if Fp,i ≥ Fp,0

0 otherwise

}〉
,

(5.5.3)

for h0, where the N observables Fp,i are drawn from the “signal distribution”, p(Fp|h0),

and the average, 〈·〉, is over that distribution. In other words, we integrate the probability

distribution of the Fp-statistic over the so called “signal space” (i.e., from the measured

value Fp,0 to infinity), that is, we count the number of signal realizations that gives an

Fp-statistic value larger than the one measured in the actual dataset. This integral can

take on any value α ∈ [0, 1] for a given h0; therefore, the integral must be repeated with

different values of h0 until α = 0.95 for a 95% upper limit.
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1. Measure the value Fp,0 from the real 17-pulsar NANOGrav dataset as described in

Section 5.4.3.

2. Simulate a synthetic noise vector n = Lw for each pulsar, where L is the Cholesky

decomposition of the noise covariance matrix C, and w is a unit variance, zero-

mean, vector.

3. Choose strain amplitude, h0 and construct a GW waveform s(t, h0, λ̃) for each pulsar

where the parameters, λ̃ are drawn from the distribution p(λ̃).

4. Construct a new set of residuals for each pulsar δtsim = R
(
n + s(t, h0, λ̃)

)
, where

R is the so called fitting projection matrix introduced in Demorest et al. (2013) and

Ellis et al. (2013).13

5. Now measure the value Fp,i for the simulated dataset.

6. Repeat steps 2–5 10,000 times and measure the number of realizations that result

in Fp,i > Fp,0.

7. Repeat steps 2–6 with different values of h0 until 95% of simulations result in

Fp,i > Fp,0.

In the remainder of the chapter we will choose to compute upper limits on the strain

amplitude as a function of GW frequency or GW sky location at a fixed GW frequency.

To facilitate such upper limits we simply fix the parameters (either GW frequency or sky

location) when simulating waveforms in step 3.

Bayesian Approach

As mentioned above, in the Bayesian framework we do not rely on simulations as we

treat the data as fixed and integrate the posterior pdf of the parameter of interest to

13We choose to create residuals with the R matrix rather than re-fitting the timing model with tempo2

in order to simulate many datasets quickly. We have done many tests to make sure that we get the same

results using both the R matrix and using a full tempo2 run.
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intuitive than a frequentist upper limit. To compute a Bayesian upper limit we compute

an integral that is analogous to Eq. (5.5.3)

α =

∫ hup

0

dh0

∫
dλ̃ d~φ p(δt|h0, λ̃, ~φ)p(h0)p(λ̃)p(~φ)

=

∫ hup

0

dh0 p(δt|h0)p(h0),

(5.5.4)

where p(δt|h0, λ̃, ~φ) is the likelihood function, p(h0), p(λ̃), p(~φ) are the prior probability

distributions on h0, λ̃, and ~φ, respectively, where ~φ denotes the noise model parameters.

In words, we simply integrate the marginalized posterior distribution of h0 until the

desired credible region corresponding to a probability of α is reached at h = hup. As in

the frequentist case, we want upper limits on the strain amplitude as a function of GW

frequency or sky location. In this case we simply fix the parameters and then marginalize

over the others. In practice, to compute the Bayesian upper limits we carry out a separate

MCMC run for fixed values of frequency and/or fixed sky locations and then compute

the 95% upper limit for each. The choice of prior on h0 is very important and can lead

to very different upper limits. Such a detailed analysis of priors is beyond the scope of

this work but will be addressed in a future paper. In principle, our prior distribution

should come from population synthesis models (Sesana 2013b); however, since we wish

our upper limits to be informed by our data and not dominated by our prior distribution

we use a very conservative14 prior that is uniform in h0 with h0 ∈ [0, 10−11].

Sky Averaged Strain Upper Limits

In Figure 20 we report the 95% upper limits on the strain amplitude, h0, as a function

of GW frequency computed using the methods described above for the frequentist and

Bayesian pipelines. The gray(red), thick black(blue) and thin black(purple) curves are the

95% upper limits on strain amplitude computed using the Fp-statistic, Bayesian method

with fixed-noise values, and Bayesian method with varying noise values, respectively.

14On a logarithmic scale this prior prefers higher strain values a priori; however, it is conservative in

the sense that the corresponding upper limit will not overestimate our sensitivity and the limit will not

depend on the lower bound of the prior as is the case for logarithmic priors.
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Figure 20 : Sky-averaged upper limit on the strain amplitude, h0 as a function of GW frequency. The

Bayesian upper limits are computed using a fixed-noise model (thick black(blue)) and a varying noise

model (thin black(purple)) and the frequentist upper limit (gray(red)) is computed using the Fp-statistic.

The dashed curves indicate lines of constant chirp mass for a source with a distance to the Virgo cluster

(16.5 Mpc) and chirp mass of 109M� (lower) and 1010M� (upper). The gray(green) squares show

the strain amplitude of the loudest GW sources in 1000 monte-carlo realizations using an optimistic

phenomenological model of Sesana (2013b). See text for more details.
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sensitivity at fgw = 1yr−1 and fgw = 2yr−1 is due to the sky position and parallax fitting

in the timing model, respectively. The upward trend at lower frequencies is due to the

quadratic spin-down model fit. The noisiness of the frequentist upper limit is due to

the fact that Fp-statistic distribution at higher frequencies is indeed quite noisy when

computed using the real data, and since our upper limits compare the value measured in

real data to values measured in simulated data, this noisiness is to be expected.

If we compare our results to those of Yardley et al. (2010), we see that the upper limits

using the 5-year NANOGrav datasets are a factor of 2 to 3 times more constraining. The

main reason for this improvement is the higher timing precision of the NANOGrav dataset

as compared to the older PPTA data sets (Verbiest et al. 2009). Although the procedures

for setting frequentist and Bayesian upper limits is quite different, our results are very

similar. In part, this is due to the fact that we have used a uniform prior on the strain

amplitude, h0, making our Bayesian analysis very similar to a pure likelihood analysis.

Since the Fp-statistic is just the likelihood (ratio) maximized over amplitudes, we would

expect a likelihood analysis to give similar results. Note that the Bayesian upper limits

when varying the noise parameters are somewhat less constraining than the fixed-noise

case. This is to be expected since at lower frequencies the GW amplitude and red noise

amplitude are somewhat correlated and at higher frequencies the GW amplitude and

jitter parameter are somewhat correlated. Both correlations will result in slightly worse

upper limits on the GW amplitude when allowing the noise parameters to vary.

In Figure 20, the dashed curves indicate lines of constant chirp mass for a source with

a distance to the Virgo cluster (16.5 Mpc) and chirp mass of 109 and 1010, respectively

and the gray(green) squares are the strain amplitude of the loudest GW events in 1000

Monte Carlo realizations using an optimistic phenomenological model of Sesana (2013b).

The model used here produces a stochastic GW background with dimensionless strain

amplitude of ∼ 2×10−15, just below the current upper limits presented in Shannon et al.

(2013). Astrophysically, these upper limits tell us that we can essentially rule out any

source with M ≥ 1010M� at the distance to the Virgo cluster (16.5 Mpc); however,

our horizon distance falls just short of the Virgo cluster for sources with M ≤ 109M�.
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have strain amplitudes below our upper limits indicating that it is very unlikely that we

will see a resolvable source at the current sensitivity (consistent with our search results).

It is important to note; however, that these strain amplitude upper limits are averaged

over sky location and inclination angle (either through marginalization in the Bayesian

case, or from Monte Carlo sampling in the frequentist case), both of which play a large

part in the overall amplitude of the signal. Therefore, these results have the caveat that

they make statements about the average sensitivity to such GW sources; however, it is

still unlikely (i.e., probability of detection . 50%) that we could detect even the loudest

optimally oriented source shown in Figure 20. For face on systems (i.e., ι = π/2) and sky

location near the best timed pulsars, the overall amplitude of the GW can be ∼ 5 times

larger than the averaged strain amplitudes reported here.

Angular Upper Limits

In Figures 21 and 22 we report the 95% lower limit on the luminosity distance as a function

of sky location computed using the frequentist and Bayesian techniques, respectively. We

have chosen to present our results in terms of the luminosity distance instead of the

strain amplitude as it is a true physical parameter and it gives a more intuitive feel as

to what the data can constrain. To compute this lower limit we carry out the same

procedure as above but we fix the frequency to fgw = 10−8 Hz and compute an upper

limit on the strain amplitude as a function of sky location; we can then use Eq. (5.3.2)

to convert an upper limit on strain amplitude into a lower limit on luminosity distance.

The values in the color bar are calculated assuming a chirp mass of M = 109M� and a

frequency of fgw = 10−8 Hz but this can be scaled to determine the minimum luminosity

distance for any chirp mass value and GW frequency. In Figures 21 and 22 the white

diamonds represent the locations of the 17 NANOGrav pulsars used in the analysis and

the black(white) stars are the sky locations of potential GW hotspots (Simon et al. 2013)

and possible GW source candidates (Valtonen et al. 2008; Iguchi et al. 2010; Ju et al.

2013).

We will now discuss the features of this sky-dependent upper limit computed using



www.manaraa.com

126

10 15 20 25 30 35 40 45

D95 ⇥
⇣

M
109 M�

⌘5/3 ⇣
fgw

10�8Hz

⌘2/3

[Mpc]

Coma

Virgo
OJ287

Fornax

3C66B

J002444-003221

Friday, February 21, 14

Figure 21 : 95% lower limit on the luminosity distance as a function of sky location computed using

the Fp-statistic plotted in equatorial coordinates. The values in the colorbar are calculated assuming

a chirp mass of M = 109M� and a GW frequency fgw = 1 × 10−8 Hz. The white diamonds denote

the locations of the pulsars in the sky and the black(white) stars denote possible SMBHBs or clusters

possibly containing SMBHBs. As expected from the antenna pattern functions of the pulsars, we are

most sensitive to GWs from sky locations near the pulsars. The luminosity distances to the potential

sources are 92.3, 1575.5, 2161.7, 16.5, 104.5, and 19 Mpc for 3C66B, OJ287, J002444−003221, Virgo

Cluster, Coma Cluster, and Fornax Cluster, respectively.
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Figure 22 : 95% lower limit on the luminosity distance as a function of sky location computed using

the Bayesian method including the noise model. The values in the colorbar are calculated assuming

a chirp mass of M = 109M� and a GW frequency fgw = 1 × 10−8 Hz. The white diamonds denote

the locations of the pulsars in the sky and the black(white) stars denote possible SMBHBs or clusters

possibly containing SMBHBs.
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to the antenna pattern response (i.e., 1 + cosµ) as is to be expected in the case of no

detection. Due to this, we are most sensitive (larger lower limit on luminosity distance)

at sky locations near the best timed pulsars (i.e., J1713+0747, B1855+09, J1909-3744)

and least sensitive in the opposite direction. More quantitatively, we note that in the

most sensitive areas of the sky we can constrain the luminosity distance dL & 47 Mpc for

M = 109M�. Furthermore, it is possible to constrain the luminosity distance dL & 2 Gpc

in the most sensitive sky locations if we consider 1010M� chirp mass sources. It should be

noted that the Bayesian fixed-noise search gives nearly identical results to the fixed-noise

frequentist search.

We now move to the sky-dependent upper limit computed using the full Bayesian

technique where the GW and noise parameters are varied simultaneously. The first ob-

servation that we make is that the overall scale is about a factor of 2 lower than the

fixed-noise frequentist or Bayesian upper limit. At first this may be surprising given the

general agreement of the sky-averaged upper limits of Figure 20; however, full Bayesian

sky-dependent upper limits exacerbate the problem of relatively few pulsars contributing

to the overall PTA sensitivity as shown in Figure 17. Another difference in this upper

limit, as opposed to the frequentist upper limit, is that it does not quite match the ex-

pected antenna pattern response function. These differences are due to the fact that we

are simultaneously varying the GW and noise parameters, and when only one or a few

pulsars contribute to the PTA sensitivity, there is a degeneracy between intrinsic red-

noise processes in the pulsar and a common GW among all pulsars. In other words, it

is very difficult to distinguish between a low-frequency continuous GW and a red noise

process if only a small number of pulsars have sufficiently low noise levels to resolve the

GW.

Because Bayesian upper limits marginalize or integrate over all parameters except the

amplitude, the correlations between the GW and the red noise amplitude will broaden

the 1-d pdf of the amplitude and thus will result in larger upper limits compared to the

fixed-noise case. As is clear from Figure 22, the aforementioned effect is very strong for

GW sky locations near our best timed pulsars. For example, we are not most sensitive
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very large percentage of the overall SNR of the GW in this case and thus results in a very

large correlation between the GW and red noise amplitudes.

Since, at the moment, we have no way of measuring the noise properties of the pulsars

independently of any GWs that may be present in the data, to perform a completely

robust upper limit or search we must allow both to vary simultaneously. Given this

reality, we must view any fixed-noise results with the caveat that they assume that the

noise parameters are measured perfectly and are independent of any GWs in the data.

Unfortunately, many of the GW hotspots and potential SMBHB sources are located

at insensitive sky locations, for both frequentist and Bayesian analyses, where our lower

limit on distance only allows us to constrain 1010M� sources. This fact is a great argument

for aggressive pulsar search campaigns and the addition of new pulsars to the PTA at

sky locations that are currently insensitive (Burt et al. 2011).

Constraints on the SMBHB Coalescence Rate

A non-detection of continuous GWs, as we have presented here, allows us to compute

an upper limit on the rate of SMBH coalescences using methods presented in Wen et al.

(2011). Since we have made no detections, we assume Poisson statistics for the probabil-

ity of an event (i.e., a detectable signal) occurring, that is, the probability of no events

is e−〈N〉, where 〈N〉 is the expected number of events. We use this probability distribu-

tion function to place a 95% upper limit on the expected number of events such that

exp(−N95) = 0.05, telling us that 〈N〉 ≤ 〈N95〉 = 3. Therefore, if the expected number

of events were greater than 3, at least one source would have been detected with 95%

probability. Now, following Wen et al. (2011), the expected number of events is

〈N〉 =

∫
d2R

d log10(1 + z)d log10(Mr)

(
df

dt

)−1

× Pd(Mr, z, f) d log10(1 + z) d log10(Mr) df,

(5.5.5)

whereR is the coalescence rate, the Pd(Mr, z, f) is the probability of detecting an SMBHB

with chirp mass M = Mr(1 + z), redshift z, and observed GW frequency f . Following

the derivation in Wen et al. (2011) and making the assumption that the differential
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z) = 0.2, it is possible to show that

d2R

d log10(1 + z) log10(Mr)
<

15
∫ (

df
dt

)−1
Pd(Mr, z, f) df

. (5.5.6)

In order to compute the detection probability Pd, we make use of the Fp statistic. We

use the same method that we have used for the upper limits, except now we compare the

the value of Fp computed using simulated data with injections to a specified threshold

based on a FAP of 10−4. We use 10,000 realizations at each value of z and f . After the

probability of detection is computed, we numerically integrate the above expression to

obtain a limit on the differential coalescence rate. It should be noted that we will be able

to place more meaningful constraints on the coalescence rate using upper limits on the

amplitude of a stochastic background of SMBHBs; however, this is beyond the scope of

this work and will be addressed in a future paper. In Figure 23 we plot our constraints

on the differential coalescence rate as a function of redshift. Since we have made the

assumption that this differential coalescence rate does not vary significantly over an order

of magnitude in chirp mass, the results presented here are for theMr = 1010M� case. We

are unable to place meaningful constraints on less massive systems. The light gray(red)

shaded area is constructed using the model presented in Jaffe & Backer (2003) along

with measurements from the Sloan Digital Sky Survey (Wen et al. 2009). The medium

gray(blue) shaded area is constructed by considering the different galaxy merger rates

based on observations (Sesana 2013b) along with the most recent MBH-sigma relation

from McConnell & Ma (2013). The dashed line comes from an a posteriori implementation

of the McConnell & Ma (2013) MBH-sigma relation into the semi-analytic model of Guo

et al. (2011) assuming accretion onto both SMBHs before merger. The black(green)

shaded region is constructed by using the observed evolution of the galaxy mass function

combined with the MBH-M-stars relation from McConnell & Ma (2013) to calibrate an

analytical model for evolving the mass function via mergers (McWilliams et al. 2012).

The figure shows that the coalescence rate for MBHs of ∼ 1010M� is poorly constrained.

This is mostly because of the steepness of the galaxy mass function at such high masses:

a small change in the slope results in a large variation in the sparse population of 1010M�

black holes. The intrinsic scattering (e.g. Gültekin et al. 2009b) and poor knowledge of
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Figure 23 : Differential coalescence rate of SMBHBs per redshift per chirp mass with mass bin centered on

1010M� and width 1 dex. We have chosen to explore only the highest masses since these high mass sources

are the ones likely to be detected by GW searches in the future. The black triangles represent our upper

95% upper limits, the light gray(red) shaded area show expected coalescence rate estimates obtained

from Jaffe & Backer (2003) as well as data from the Sloan Digital Sky Survey (Wen et al. 2009). The

medium gray(blue) shaded region comes from the phenomenological models of Sesana (2013b) and the

black dashed line comes from an a posteriori implementation of the McConnell & Ma (2013) MBH-sigma

relation into the semi-analytic model of Guo et al. (2011). The black(green) shaded region is constructed

by using the observed evolution of the galaxy mass function combined with the MBH-M-stars relation

from McConnell & Ma (2013) to calibrate an analytical model for evolving the mass function via mergers

(McWilliams et al. 2012).
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further uncertainties, making the coalescence rate estimate problematic. As is clear from

the figure, we are unable to place any constraints on the physical models mentioned above;

however, as our GW sensitivity improves with time, we will begin to place meaningful

constraints on physical models pertaining to the coalescence rate of SMBHBs.

5.6 Discussion

5.6.1 Future Improvements

Predicting the future sensitivity of PTAs to continuous GWs is quite difficult and depends

on a number of poorly constrained factors that make up the entire noise budget for

each pulsar (Cordes & Shannon 2010). A detailed study of these effects on the future

performance of a PTAs sensitivity to continuous GWs is beyond the scope of this work.

Here we simply derive a rough scaling law for the SNR of a continuous GW measured

by a PTA and make a few statements about expected future performance. The square of

the SNR is defined to be15

ρ2 =
∑

α

(sα|sα) =
∑

α

2Re

∫ ∞

−∞
df
|s̃α(f)|2
Snα(f)

, (5.6.1)

where s̃α(f) is the Fourier transform of the GW induced timing residuals and Snα(f)

is the power spectral density of the noise for the αth pulsar. As we mentioned above,

the frequency of the GW will not vary over the observation time and the waveform is

approximated by a sine wave at a single frequency. We will further assume that the pulsar

term is at the same frequency for this scaling law computation. The SNR then becomes

ρ2 ≈
∑

α

2Re

∫ ∞

−∞
df
A(f)2a2

αδ(f − f ′)2

Sred
α (f) + σ2

α/cα

≈ A(f ′)2
∑

α

Tα
2

a2
α

Sred
α (f ′) + σ2

α/cα
,

(5.6.2)

where δ(f − f ′) is the Dirac delta function, A(f ′) is the pulsar independent amplitude of

the GW, aα is a geometric factor that depends on the antenna pattern functions for each

pulsar, cα is the observing cadence for each pulsar, and Sred
α (f ′) and σα are the red noise

15We ignore timing model fitting here and make use of the Fourier domain for ease of computation.
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continuous GWs is proportional to the SNR, thus this expression for the SNR can serve

as a proxy for how our upper limits and sensitivity will improve with various quantities.

It is interesting to examine this scaling law in the white noise and red noise dominated

regime

ρwhite ∝
(∑

α

Tαa
2
αcα
σ2
α

)1/2

(5.6.3)

ρred ∝
(∑

α

Tαa
2
α

Sred
α (f ′)

)1/2

. (5.6.4)

The above scaling laws tell us that many pulsars distributed across the sky with high

timing precision, high observing cadences, and low red noise levels observed over a long

baseline will result in the best possible sensitivity to continuous GWs. New pulsar timing

backends at Arecibo and the GBT (DuPlain et al. 2008) give roughly a factor of two

higher timing precision for many pulsars which will translate into an expected upper

limit on the amplitude of continuous GWs that is a factor of two more constraining.

As we acquire more data on our currently timed and newly discovered pulsars we will

gain more sensitivity and will be able to probe to lower frequencies. Access to IPTA

data would essentially serve to increase the observing cadence, and thus our sensitivity,

since we would have complementary data from many different observatories measured

at different times. Furthermore, current pulsar search campaigns (Lynch & Green Bank

North Celestial Cap Survey Collaborations 2013) are discovering new MSPs in our least

sensitive sky locations (see Figure 21 and Figure 22) which will dramatically increase

our overall sky coverage and will allow for better distinction between GW and noise

models. Finally, advanced detectors, such as the Square Kilometer Array (SKA; Lazio

2013) are expected to time tens of pulsars at or below the 100 nanosecond level, which

will likely solve many of the current problems that we face with poor angular sensitivity

and inability to distinguish between single GW source and intrinsic pulsar noise.

In the red noise dominated regime, the cadence of observations and the overall white

noise level is negligible and we essentially only gain sensitivity through the addition of new

pulsars and continued timing. Here we note again that there is very little evidence for red

noise in the 5-year NANOGrav data set but this may change in the future as we become
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signal in all pulsars. Of course, red noise from a stochastic background of GWs or from

intrinsic pulsar spin-noise (Shannon & Cordes 2010) is likely to have a steep spectrum

and this red-noise dominated regime would only apply at the lowest frequencies.

For many pulsars in the 5-year dataset we are in the white noise dominated regime and

since the SNR consists of the sum of the inverses of the white noise RMS values, we see

that only the best timed pulsars will contribute (as we have seen throughout this paper)

and one may argue that we should focus all observing time on the best pulsars. However,

as was shown in Siemens et al. (2013), our sensitivity to the stochastic background has

a significantly weaker dependence on observing cadence and white noise RMS but has a

linear dependence on the number of pulsars in the array. Thus, it is difficult to realistically

optimize a PTA for both continuous and stochastic GW sources.

5.6.2 Conclusions

In this chapter we have performed various searches for continuous GWs from non-spinning

SMBHBs in circular orbits using both frequentist and Bayesian techniques. Specifically,

we have run a fixed-noise frequentist and Bayesian pipeline, as well as a varying noise

Bayesian pipeline. In the absence of any detections we have placed upper limits on

the strain amplitude of continuous GWs as a function of GW frequency. We have also

computed a lower limit on the distance to such SMBHBs as a function of sky location,

as well as placing constraints on the differential coalescence rate of such SMBHBs. Our

sky-averaged upper limits on strain amplitude as a function of frequency are a factor of

∼ 3 times more constraining than the previously published upper limits (Yardley et al.

2010) and we see good agreement between all three data analysis methods. Although

improving, our limits still lie well above the amplitudes of individual sources produced

from several realizations of an optimistic SMBHB population. We have shown that with

good estimates of the intrinsic noise we can rule out any sources with luminosity distance

< 2 Gpc and a chirp mass of ∼ 1010M�. Unfortunately we are not yet able to place any

constraints on predictions for the coalescence rate of SMBHBs obtained from both theory

and observations.
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completely robust data analysis techniques and what will be required from future PTAs

in order to secure a confident detection of a continuous GW. These statements can be

summarized as follows:

1. Currently we have no way to confidently separate intrinsic noise in the residuals

from any GW that may be present. Therefore, it is necessary to include both noise

and GW parameters in any data analysis pipeline that aims to be truly robust.

This is not to say that fixed-noise methods should not be used; instead we advocate

a hierarchical approach where the faster fixed-noise methods are used as a first-pass

and then followed up with a full GW plus noise search. Lastly, a signal with more

information, such as that from an eccentric system, could help break this degeneracy

between signal and noise models and will be the subject of a future paper.

2. Even with simultaneous noise and GW characterization, unless we have several well

timed pulsars (with very similar timing precision on all) with decent sky coverage,

a confident detection of a continuous GW is unlikely even if the signal is loud.

While not as likely as a detection of a stochastic GW background, with continually

improving timing precision, the addition of new pulsars to PTAs and improved data

analysis techniques, prospects are good for obtaining astrophysically constraining GW

limits, or possibly even a detection of a continuous GW, over the next decade.

Appendix 5.A Pulsar Term Frequency Evolution

In chapter 1 we derived the general form of frequency evolution due to emission of GWs

leading to the following expression for the angular phase and orbital frequency evolution

Φ(t) = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω(t)−5/3

)
(5.A.1)

and

ω(t) =

(
ω
−8/3
0 − 256

5
M5/3t

)−3/8

. (5.A.2)

Eqs. 5.A.2 and 5.A.1 are true in general and can be applied when the frequency evolves

appreciably over the total observing time. However, it is very useful to work under the
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Tchirp =
ω0

ω̇
= 3.2× 105 yr

( M
108 M�

)−5/3(
f0

1× 10−8 Hz

)−8/3

. (5.A.3)

Since typical PTA observations are on the order of 10 – 20 years and T/Tchirp ∼ 10−4,

this is a safe assumption for a broad range of masses and initial orbital frequencies of

interest. With this approximation we can write the orbital frequency and phase for the

earth term simply as

Φe(t) = Φ0 + ω0(t− t0) (5.A.4)

ωe(t) = ω0. (5.A.5)

However, for the pulsar term we are “seeing” the phase and frequency at a retarded time

tp = t− L(1− cosµ), where L is the pulsar distance and µ is the angle between the GW

and the pulsar on the sky. Because pulsar distances are on the order of a few kpc, this

means that the total time baseline is on the order of thousands of years and we would

expect frequency evolution over those timescales. However, just because the pulsar ”sees”

a different frequency than the earth, this does not mean that the frequency at the pulsar

changes over the observation time. For this reason we can write the phase and frequency

at the pulsar in a similar manner

Φp(t) = Φp,0 + ωpt (5.A.6)

ωp(t) = ωp. (5.A.7)

We can determine the “pulsar frequency” by evaluating Eq. (5.A.2) and setting t = tp

ωp(t) = ω0

(
1− 256

5
M5/3ω

8/3
0 (tp − t0)

)−3/8

= ω0

(
1 +

8

3

ω̇0

ω0

L(1− cosµ) +
8

3

ω̇0

ω0

(t− t0)

)−3/8

≈ ω0

(
1 +

8

3

ω̇0

ω0

L(1− cosµ)

)−3/8

≡ ωp,

(5.A.8)

In the above, we can safely ignore the last term in the second line by the reasoning that

the frequency does not evolve over the observation time. Notice that the pulsar term

frequency is always less than the earth term frequency as we are observing the dynamics
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pulsar phase in this approximation is a bit trickier. Re-writing Eq. (5.A.1), we get

∫ Φ(tp)

Φ(tp,0)

dΦ =

∫ tp

tp,0

dt′ω(t′)

Φp(t)− Φp,0 = ωp(t− L(1− cosµ)) + ωpL(1− cosµ)

∴ Φp(t) = Φp,0 + ωpt,

(5.A.9)

where we have used the fact that ω(t) = ωp in the region of integration and we have

adopted a notation in which Φp(t) ≡ Φ(tp). To determine the initial phase at t =

−L(1− cosµ) we use Eq. (5.A.1) to obtain

Φp,0 = Φ(t = −L(1− cosµ)) = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω−5/3

p

)
(5.A.10)

Although the above expressions for Φe(t) and Φp(t) are approximations, they hold true

for nearly all values of M and ω0 that we would expect in nature.

Appendix 5.B Auxiliary Pulsar Mode Jump

In E13, we discussed the difficulty posed by including the pulsar distance as a search

parameter, showing that a very small change to the pulsar distance (≤ 1 pc) can result in

a phase shift in the GW waveform of order 2π. In that work we sidestepped this problem

by breaking the pulsar term into a “phase” term and an “evolution” term. The phase

term corresponds to very small jumps in the pulsar distance that will change the constant

phase of the pulsar term, whereas the evolution term corresponds to large jumps in the

pulsar distance that will change the frequency evolution. We used separate parameters

to jump in the phase and evolution. More explicitly, we introduce a pulsar phase for each

pulsar that is used in the phase term and also include the pulsar distance that is only

used in the evolution term. While this method allows for good mixing and acceptance

rates, it adds an extra Npsr parameters to the search.

Here we will describe a new method that does not require any additional parameters.

This jump technique is summarized as follows:

1. Perform initial jump (either correlated or uncorrelated as described above).
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likely several radians from the pre-jump pulsar phase due to the pulsar distance

jump.

3. We desire a small Gaussian jump in the pulsar initial phase. To accomplish this we

will slightly modify the pulsar distance such that

Φp,0(L1 + δL) = Φ0
p,0 + δφ, (5.B.1)

where the 1 and 0 superscripts denote post and pre-jump values, respectively, δL

is a small pulsar distance offset, and δφ is a small Gaussian phase jump. We can

re-write the above expression

Φ1
p,0 +

dΦp,0

dL

∣∣∣∣
L=L1

δL = Φ0
p,0 + δφ, (5.B.2)

where Φ1
p,0 = Φp,0(L1) and we have simply used a Taylor expansion. Making use of

Eq. (5.A.10) we solve for δL

δL =
Φ1
p,0 − Φ0

p,0 + δφ

ωp(1− cosµ1)
. (5.B.3)

4. Now let Lnew = L1 + δL.

Essentially what we have done is to turn a pulsar distance jump into a pulsar phase

jump. So in essence we are not breaking detailed balance as we are simply using the

pulsar distance as an auxiliary parameter and initial pulsar phase as the actual search

parameter. This auxiliary jump is called after every jump proposal in the cycle to ensure

reasonable acceptance rates.
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Chapter 6

First-order Likelihood

Approximation for Stochastic GW

Background Detection

“What I came to realize is that fear, that’s the worst of it. That’s
the real enemy. So, get up, get out in the real world and you kick
that bastard as hard as you can right in the teeth.”

— Walter White, Breaking Bad: Better Call Saul

This chapter is based on:
An Efficient Approximation to the Likelihood Function For Gravitational Wave Stochastic
Background Detection Using Pulsar Timing Data
J. A. Ellis, X. Siemens, R. van Haasteren
ApJ (2013), 769, 63

6.1 Introduction

All the SMBBH mergers that have taken place throughout the history of our universe

produce a stochastic background of gravitational waves (Lommen & Backer 2001; Jaffe &

Backer 2003; Wyithe & Loeb 2003; Volonteri et al. 2003; Enoki et al. 2004; Sesana et al.

2008; Sesana 2013b; McWilliams et al. 2012), as well as individual periodic signals that

may be detectable as above the confusion noise (Sesana et al. 2009; Sesana & Vecchio

2010; Roedig & Sesana 2012; Ravi et al. 2012; Mingarelli et al. 2012), and bursts (van

Haasteren & Levin 2010; Cordes & Jenet 2012). A number of techniques have been
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Stinebring et al. 1990; Lommen 2002; Jenet et al. 2005, 2006; Anholm et al. 2009; van

Haasteren et al. 2009a,b; Yardley et al. 2011; van Haasteren et al. 2011; Cordes & Shannon

2012; Demorest et al. 2013), as well as periodic signals (Jenet et al. 2004; Yardley et al.

2010; Corbin & Cornish 2010; Lee et al. 2011; Ellis et al. 2012b; Babak & Sesana 2012;

Ellis et al. 2012c; Petiteau et al. 2013), and bursts (Finn & Lommen 2010).

For stochastic background searches, evaluations of the full likelihood are computa-

tionally challenging. PTAs are currently timing up to a few tens of pulsars, with several

thousand points each. In addition, the likelihood function depends not only on the rel-

atively small number of parameters that characterize GW stochastic background, but

also on several intrinsic red and white noise parameters for each pulsar. A number of

techniques have already been introduced to reduce the computational burden of such

searches (van Haasteren 2013; Lentati et al. 2013b; Taylor et al. 2012), and we will dis-

cuss these results later in the chapter.

Although the stochastic background produces random changes in the times-of-arrival

(TOAs) of an individual pulsar, the cross-correlation of its effects on two pulsars only1 de-

pends on the angular separation between pulsars (Hellings & Downs 1983) for an isotropic

background. In this chapter we introduce an efficient approximation to the likelihood by

using an expansion to first order in the amplitude of the cross-correlation terms intro-

duced by Anholm et al. (2009). This technique has already used to analyze the first

International Pulsar Timing Array Mock Data Challenge (Ellis et al. 2012a). The ap-

proximation affords us a computational savings quadratic in the number of pulsars in the

pulsar timing array, a factor of a one to three orders of magnitude, depending on the size

of the PTA.

This chapter is organized as follows. In Section 6.2 we write the likelihood func-

tion for the parameters of the stochastic background as well as intrinsic noise parame-

ters of the pulsars, and introduce the first order approximation in the amplitude of the

1In general, the effect of this cross correlation will depend on the individual pulsar terms. However,

as was shown in Anholm et al. (2009), this contribution will become negligible for pulsar distances and

GW frequencies of interest.
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simulated gravitational wave backgrounds, and that the level of bias introduced by our

approximation is negligible for astrophysically reasonable stochastic background ampli-

tudes. We conclude in Section 6.4 with a summary of our results, compare our results to

other work to increase the computational efficiency of stochastic background searches (van

Haasteren 2013; Lentati et al. 2013b; Taylor et al. 2012), and introduce a technique that

can be used to search for a combination of continuous wave signals and stochastic back-

grounds, a possibility suggested by recent work (Ravi et al. 2012), which will be the basis

for future work.

6.2 The Likelihood Function

In this chapter, we make use of the linear transformation approach to the likelihood

function. We will also show that, in a frequentist sense, the maximum of the expectation

value of the likelihood function is an unbiased estimator of the noise parameters in the

low-signal regime.

Since we have assumed that our noise n is Gaussian and stationary, for a pulsar

timing array with M pulsars we can write the probability distribution as the multi-variate

Gaussian

p(n|~θ) =
1√

det(2πΣn)
exp

(
−1

2
nTΣ−1

n n

)
, (6.2.1)

where

n =




n1

n2

...

nM




(6.2.2)

is a vector of the noise time-series, nα(t) for all pulsars, Σn is the pre-fit noise covariance

matrix and ~θ is a set of parameters that characterize the noise. Henceforth, a greek

subscript will denote the pulsar number. As we noted above, we do not actually measure
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R =




R1 0 . . . 0

0 R2 . . . 0

...
...

. . .
...

0 0 . . . RM



. (6.2.3)

Extending Eq. (2.4.5) to multiple pulsars, the likelihood in terms of the timing residual

data is simply

p(r|~θ) =
1√

det(2πΣ)
exp

(
−1

2
rTΣ−1r

)
. (6.2.4)

The inverse of Σ does not formally exist since we have removed degrees of freedom by

fitting out the timing model. In practice, we can make use of a singular value decomposi-

tion to compute the determinant and pseudoinverse to evaluate the likelihood. Viewed in

this way, the likelihood function for the residuals is simply a change of coordinates where

R is a linear (but not invertible) map from n→ r = Rn.

The covariance matrix for the timing residuals is the block matrix,

Σ =




P1 S12 . . . S1M

S21 P2 . . . S2M

...
...

. . .
...

SM1 SM2 . . . PM



, (6.2.5)

where

Pα = 〈rαrTα 〉, (6.2.6)

Sαβ = 〈rαrTβ 〉
∣∣
α 6=β, (6.2.7)

are the auto-covariance and cross-covariance matrices, respectively, for each set of resid-

uals. It is very important to note that we work exclusively in the post-fit variables. As

above we use the post-fit residuals, rα = Rαnα and the post-fit auto- and cross-correlation

matrices, Pα = RαP
prefit
α RT

α and Sαβ = RαS
prefit
αβ RT

β . Henceforth, we will drop any mention

of pre-fit or post-fit as we will only work with post-fit variables.

It is worth pointing out that this treatment is somewhat different from previous

Bayesian analyses (van Haasteren et al. 2009a; van Haasteren & Levin 2010; van Haasteren
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VHML used a marginalized pdf. In other words, we fix the best fit parameter offsets,

δξbest through our use of the projection matrix R, whereas VHML marginalizes over the

parameter offsets δξ (See Appendix 6.A for more details).

We would like to use the likelihood to determine the spectral index, γgw, and ampli-

tude, Agw, of the stochastic background from our data. The GW parameters are the same

for all pulsars. In addition, each pulsar will have intrinsic noise parameters as well. The

intrinsic pulsar timing noise is normally parametrized with four parameters: an ampli-

tude Aα and spectral index γα for a power law red noise process, and EFAC and EQUAD

parameters, Fα and Qα, for white noise processes. In general the EFAC parameter is a

multiplicative factor representing any systematic effects in the uncertainty in each TOA

based on the cross correlation of the folded pulse profile with a template (Taylor et al.

1992). The EQUAD parameter is an extra white noise parameter that is added to the

TOA error in quadrature and could represent the expected pulse phase jitter (Cordes &

Shannon 2010) and other white noise processes that are un-accounted for. Therefore, we

write our auto-covariance as a sum of a common GWB term and a pulsar dependent term

Pα = Nα + Saα, (6.2.8)

where Nα is the intrinsic noise auto-covariance matrix and Saα is the common GWB

auto-covariance matrix for pulsar α. It is convenient to work in a block matrix notation

where

Σ = N + Sa + Sc = P + Sc, (6.2.9)

where P is a block diagonal matrix with diagonals Pα and Sc is block matrix with off

diagonals Sαβ, and zero block matrices on the diagonal.

We will now quickly show that, in a frequentist sense, the maximum of the expectation

value of the likelihood function is an unbiased estimator of our signal parameters ~θ =

{Agw, γgw, Aα, γα,Fα,Qα}. We write the log likelihood function as

ln L = −1

2

[
Tr ln Σ + rTΣ−1r

]
, (6.2.10)

where we have used the fact that ln det(A) = Tr ln(A) for a general matrix, A. To show

that the maximum of the expectation value of this likelihood function is an unbiased
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for signal parameters ~θ = ~θtrue. Taking the expectation value we obtain

〈ln L〉 = −1

2
Tr
[
ln Σ + XΣ−1

]
, (6.2.11)

where X = 〈rrT 〉 is the covariance matrix of the data. Defining ∂i = ∂/∂θi we obtain

∂i〈ln L〉 = −1

2
Tr
[
Σ−1∂iΣ−XΣ−1∂iΣΣ−1

]
. (6.2.12)

Assuming that our noise model is correct, we have X = Σ and

∂i〈ln L〉 = −1

2
Tr
[
Σ−1∂iΣ− ∂iΣΣ−1

]
= 0, (6.2.13)

where we have used the fact that Tr(AB) = Tr(BA) for general matrices, A and B.

Therefore, the maximum of the expectation value of the likelihood function is an unbiased

estimator of our model parameters ~θ.

6.2.1 Likelihood with first order approximation

In practice the matrix Σ is quite large and therefore, computationally prohibitive to

invert. Since many multi-frequency residual datasets now have on the order of 103 points,

for many modern PTAs the matrix Σ will be of order 104 × 104. We would like to avoid

inverting the full covariance matrix if at all possible. First let us rewrite the cross-

covariance as Sc,αβ = ζαβSαβ, where Sαβ is the temporal cross covariance between pulsar

α and pulsar β. The coefficients represent the spatial correlations and are given by the

Hellings and Downs coefficients

ζαβ =
3

2

1− cos ξαβ
2

ln

(
1− cos ξαβ

2

)

− 1

4

1− cos ξαβ
2

+
1

2
+

1

2
δαβ,

(6.2.14)

where ξαβ is the angular separation of pulsars α and β, and δαβ is the Kronecker delta.

We denote P = δαβPαβ as the auto-covariance matrix of pulsar α describing the noise

and auto-covariance of the GWB. We then use the following notation to form matrices

from indexed quantities: P = {Pαβ}. Now, we perform the expansion of Σ−1 in terms of
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Σ−1 = (P + {ζαβSαβ})−1 =
(
I + P−1{ζαβSαβ}

)−1
P−1

≈ P−
{∑

β,µ

ζβµP
−1
αβSβµP

−1
µν

}

+

{∑

β,µ,ν

ζβµζµνP
−1
αβSβµP

−1
µµSµνP

−1
νσ

}
+O(ζ3).

(6.2.15)

It is also possible to expand the determinant term in a similar fashion

ln det Σ = Tr ln Σ = Tr ln(P + {ζαβSαβ})

= Tr
[
ln P + ln(I + P−1{ζαβSαβ})

]

≈ Tr

[
ln P + P−1{ζαβSαβ}

−
{∑

β,µ,ν

ζβµζµνP
−1
αβSβµP

−1
µµSµνP

−1
νσ

}]
+O(ζ3).

(6.2.16)

Here, the order O(ζ) term is zero because P is block diagonal and {Sαβ} is block traceless

and the trace of the product of a diagonal matrix and traceless matrix vanishes. If we

ignore all terms of ζ2 and higher order and return to our original notation then we see

that

Σ−1 ≈ P−1 −P−1ScP
−1 +O(ζ2) (6.2.17)

ln det Σ ≈ Tr ln P +O(ζ2). (6.2.18)

This derivation may give us the sense that this expansion may hold true for all GWB

amplitudes; however, this is not true as we will now show. Although we have written

this approximation in terms of an expansion in the Hellings and Downs coefficients, it

is also useful to think of it as an expansion in the amplitude of the GWB. Indeed, that

it how it was conceived of in Anholm et al. (2009). We have not performed a true

first order expansion however, since the inverse of the auto-correlations matrix P−1 =

(N+A2
gwAa)

−1, where A2
gwAa = Sa, contains terms of infinite order in the amplitude. We

can essentially think of the O(ζ) terms in Equations 6.2.17 and 6.2.18 as the corrections

to the amplitude parameter when we have a spatially correlated signal. Thus, we have

truncated these correction terms at O(A2
gw) and we would not expect this approximation
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will show in Section 6.3. With these approximations, it is now possible to write the

approximate log-likelihood

lnL = −1

2

[
Tr ln P + rTP−1r− rTP−1ScP

−1r
]

= −1

2

M∑

α=1

[
Tr lnPα + rTαP

−1
α rα

−
M∑

β 6=α
rTαP

−1
α SαβP

−1
β rβ

]
.

(6.2.19)

In the second line we have explicitly written out the sum over pulsars and pulsar pairs

in order to highlight the fact that we only need to invert the individual auto-covariance

matrices as opposed to the inverse of the full block covariance matrix, thereby, significantly

reducing the computational cost of a single likelihood evaluation. Consider a PTA with

M pulsars with N TOAs each. For a full likelihood evaluation we must perform one

Cholesky inversion of the full covariance matrix which scales like ∼ α(MN)3 and ∼ M2

matrix multiplications which scale like ∼ βN3. However, one evaluation of the first

order likelihood requires M Cholesky inversions which scale like ∼ αN3 and M matrix

multiplications which, again, scale like ∼ βN3. Though benchmarking tests we have

found that β ∼ 10α and thus the matrix multiplications will dominate both likelihood

calls for a reasonable sized PTAs (M . 100) resulting in a computation speedup factor

of ∼ (α/β)M2.

It is possible to analytically show that the maximum of the expectation value of this

approximate likelihood is an unbiased estimator in the same manner as above. First we

take the expectation value of the log-likelihood

〈lnL〉 = −1

2
Tr
[
ln P + XP−1 −XP−1ScP

−1
]

(6.2.20)

and then take a derivative with respect to a model parameter

∂i〈lnL〉 = −1

2
Tr

[
P−1∂iP−XP−1∂iPP−1

+ XP−1∂iPP−1ScP
−1 −XP−1∂iScP

−1

+ XP−1ScP
−1∂iPP−1

]
.

(6.2.21)
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gw is small compared to the amplitude

of the intrinsic noise. Assuming that we have modeled the covariance matrix correctly,

we have X = Σ. Writing out the explicit amplitude dependence we assume

P = N + A2
gwA⇒ P−1 ≈ N−1 − A2

gwN−1AN−1 (6.2.22)

Σ = N + A2
gwA + A2

gwC, (6.2.23)

where N, A, and C are the auto-covariance of the noise, the auto-covariance of the GWB

and the cross-covariance of the GWB, respectively. Then, to first order in A2
gw we have

∂i〈lnL〉 = −1

2
Tr

[
N−1∂i(A

2
gwA)

−N−1∂i(A
2
gwA)− ∂i(A2

gwC)N−1

]
= 0,

(6.2.24)

where the first two terms cancel and the third term is the trace of the product of a

diagonal matrix and a traceless matrix. Thus, to first order in A2
gw, the maximum of the

expectation value of this approximate likelihood is an unbiased estimator of the our signal

parameters θ in the weak signal limit. In other words, we have shown analytically that

for reasonably small stochastic background amplitudes, as is expected, the parameters

that we infer from this likelihood function will be unbiased on average. This result will

be verified in the next section through the use of simulations.

6.3 Simulations

Here we will compare our first order likelihood approximation to the full likelihood

of VHML and perform mock searches of simulated data with and without an injected

stochastic GWB in order to demonstrate its efficacy. We will also perform monte-carlo

simulations to test the consistency of our likelihood function. These simulations are solely

meant as a proof of principle and do not claim to reproduce all features of real PTA data

(irregular sampling, jumps, time varying DM corrections, etc.). However, our analysis

method makes no assumptions about sampling by operating in the time domain and takes

all timing model parameters into account via the projection matrices introduced in Sec-

tion 6.2. The application of this method to real NANOGrav and IPTA datasets will be

the subject of future work. For all simulations in the present work we use tempo2 and
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Figure 24 : Comparison of full likelihood (gray) of van Haasteren et al. (2009a) and the first order

likelihood (black). (a): 10 pulsars A = 1× 10−15, (b): 10 pulsars A = 1× 10−14

and the fake, GWbkgrd, general2 and designmatrix plugins to generate the residuals

and the corresponding design matrices. All simulated white noise is solely radiometer

noise at the level of 100 ns unless otherwise noted.

6.3.1 Mock searches

First we will perform a simple test to compare the first order likelihood of this work and

the full likelihood of VHML. Here we use a PTA with 10 pulsars observed at a cadence of

20 TOAs per year for 5 years where we have fixed the EFAC parameter to be one (all white

noise is encompassed in error bars as simulated) and assume that there is no intrinsic red

noise, resulting in a search over two parameter; the amplitude of the stochastic GWB, A,

and the power spectral index, γ. For both cases a grid search was carried out with 100

points in each dimension and A ∈ (0, 1 × 10−14) for an injected value of A = 1 × 10−15

and A ∈ (0, 2 × 10−14) for an injected value of A = 1 × 10−14, all the while we have

γ ∈ [1, 7]. The results are presented in Figure 24 where the contours denote the one,

two and three sigma credible regions, the gray contours are from the VHML likelihood

function and the black contours are from the first order likelihood. In Figure 24(a) we

have injected a stochastic GWB with A = 1 × 10−15 and γ = 13/3. First we notice

that the injected value (’×’ marker) is well within the 1-sigma credible regions for both

likelihood functions. We also see that the confidence contours are nearly identical, with

the first order likelihood preferring slightly larger amplitudes and smaller spectral indices.
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the full likelihood when our signal is relatively small, showing no discernible bias and

faithfully reproducing nearly identical credible regions.

In Figure 24(b) we have injected a stochastic GWB with A = 1×10−14 and γ = 13/3.

Again, the injected value lies within the 1-sigma credible region, however; now we do

notice a difference between two credible regions from the full and first order likelihoods.

The first order likelihood is biased towards lower amplitudes and lower spectral indices.

In fact we can almost see where the first order approximation begins to break down.

Notice that the contours are nearly identical for lower amplitudes and deviate more

with increasing amplitude. This behavior is not surprising in that we know that this

likelihood is only unbiased to first order in the amplitude as shown in Section 6.2. In

fact, it is impressive that this approximation performs this well with only a small bias in

the large signal limit (even with timing residuals lower than 100 ns in many pulsars, the

signal-to-noise-level of the data simulated here is well above any reasonable estimates for

future PTA sensitivities.). This bias will be discussed further in Section 6.3.3.

The simulations used in the work have been quite ideal and do not contain any sys-

tematic effects such as clock errors which can manifest as a correlated noise source with

uniform correlation coefficients (Yardley et al. 2011), errors in solar system ephemerides,

which can manifest as dipole signals in the residuals, or new physics such as non-gr po-

larization modes (Lee et al. 2008; Chamberlin & Siemens 2012) or massive gravitons (Lee

et al. 2010) which would change the shape of the Hellings and Downs curve. We have,

for the most part, also assumed that the intrinsic pulsar noise can be assumed to be

white gaussian noise with no discernible red noise. While previous work suggests that

there will be red noise present in many MSPs (Shannon & Cordes 2010), analyses of the

present timing data (van Haasteren et al. 2011; Perrodin et al. 2013b; Ellis et al. 2014)

suggest that the data is white noise dominated and there is little to no evidence for red

noise. However further study of the model selection problem taking in to account the

aforementioned effects is crucial to present detection efforts and will be the subject of a

future paper.
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We now turn to the question of detection. In a Bayesian analysis we would like to compute

the odds that there is a GWB present in our data. Not surprisingly, the tool normally

used to this end is the Odds ratio of Bayes factors. Consider two models that we will

label M1 and M2, then the Odds ratio is defined as

O = B(M1,M2|r)
p(M1)

p(M2)
, (6.3.1)

where

B(M1,M2|r) =

∫
d~θ1 p(r|~θ1,M1)p(~θ1)∫
d~θ2 p(r|~θ2,M2)p(~θ2)

(6.3.2)

is the Bayes factor (i.e the ratio of the marginalized likelihood functions over parameters

~θ1 and ~θ2 corresponding to models M1 and M2 respectively), r is our data and p(M1) and

p(M2) are the a priori probabilities on models M1 and M2 respectively. Note that the

Bayes factor is the data dependent part of the odds ratio where the a priori probabilities

of the models is somewhat subjective, and as such, we will only consider Bayes factors

when discussing detection in the this work 2. For our purposes, we would like to compare

at least three different models when weighing the odds of a stochastic GWB in our data:

1. Mgw: A power law stochastic GWB with spatial correlations described by the

Hellings and Downs coefficients ζαβ, amplitude Agw and power spectral index γgw,

individual power law red noise processes for each pulsar with amplitude Aα and

power spectral index γα and white noise for each pulsar characterized by an EFAC

parameter Fα and EQUAD parameter Qα.

2. Mcorr: A common red noise process among pulsars (as suggested in Shannon &

Cordes (2010)) with no spatial correlations and individual intrinsic red and white

components as in model Mgw.

3. Mnull: Only intrinsic red and white noise processes with no common red or white

noise components among pulsars.

2It is possible to use astrophysical information such as the expected level of the stochastic background

compared to our noise or the expectation number of single sources to construct the a priori probabilities.

Here we will quantify our ignorance by considering equal a priori probabilities of all tested models.
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common red noise in our data but it will not necessarily tell us that this common noise

is due to the stochastic GWB or some other common red noise source. Hence, a large

Bayes factor B(Mgw,Mnull|r) is necessary but not sufficient for detection. However, the

comparison of models Mgw and Mcorr can really give us information about the nature of

the common red noise signal. As the two aforementioned models are identical except for

the spatial correlations, a large Bayes factor B(Mgw,Mcorr|r) will give us the odds that

there is a common red noise process described spatial correlations ζαβ. Since these spatial

correlations are the signature of a stochastic GWB, the condition that this Bayes factor

be large is both the necessary and sufficient condition for detection. In fact, this Bayes

factor is closely related to signal-to-noise ratios in previous detection schemes (Jenet et al.

2005; Anholm et al. 2009; Yardley et al. 2011; Chamberlin et al. 2013) that measure the

significance of the cross correlations.

This first order likelihood approximation has already been tested on the open and

closed (Ellis et al. 2012a) IPTA Mock Data Challenge, where all challenges consisted

of 130 data points per pulsar with 36 pulsars. For the closed data challenge, we have

computed the Bayes factors mentioned in the previous section. In Ellis et al. (2012a)

we have shown that we do indeed see very strong evidence for both a common red noise

signal and a red noise signal with spatial correlations described by the Hellings and Downs

coefficients. However, as we mentioned above, although in this case, the evidence for both

models Mgw and Mcorr is very high, as we expect, the Bayes factor B(Mgw,Mnull) is much

larger than B(Mgw,Mcorr). For this reason, we expect that in analysis of real PTA data

we will begin to see strong evidence for common red noise before we are able to see strong

evidence for the expected cross correlations. In other words, as we gain more sensitivity,

the first two terms in Eq. (6.2.19) will dominate the likelihood function and the third term

will only play a significant role as our sensitivity increases further. A full analysis of this

feature along with projected sensitivity curves based on future pulsar timing campaigns

and hardware upgrades will be explored in future work.
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Here we will test the consistency and unbiasedness of our model through injections.

Simply put, it is a type of hypothesis testing similar to the Kolmogorov-Smirnov test.

In this test the null-hypothesis, our analysis method is internally consistent, is accepted

when for x% of realizations, the true injected parameter lies within the inner x% of the

marginalized posterior distribution. A similar test was done recently in van Haasteren

& Levin (2013) in one dimension through the use of the empirical distribution function

(EDF). Here we will review this method and generalize it to two dimensional marginalized

posterior distributions. We define the inner high-probability region (HPR) of the two-

dimensional marginalized posterior distribution as
∫

W

p(θ1, θ2)dθ1dθ2 = a

W = {θ1, θ2 ∈ R : p(θ1, θ2) > La},
(6.3.3)

where La is some value > 0 unique to each a that corresponds to a curve of equal

probability in the two-dimensional parameter space. In practice we lay down a grid in

this two-dimensional parameter space and perform our search over the two parameters

of interest (for the stochastic background we search over A and γ, the dimensionless

strain amplitude and power spectral index of the GWB). We then define a set of points

{Ai, γi} ∈ Sa : p(Ai, γi) > La, that is to say we find all points in our grid that correspond

to posterior values that lie inside our contour curve La. To determine if the injected

values of {Atrue, γtrue} lie within the HPR we simply check to see if the injected values are

consistent with the set Sa. To do this we first define the complementary set to be S̄a such

that points that are in this set are outside or the HPR. Now we define two chi-squared

functions in the parameter space

χa(Ai, γi)
2 =

(
Ai − Atrue

Atrue

)2

+

(
γi − γtrue

γtrue

)2

(6.3.4)

χ̄a(Aj, γj)
2 =

(
Aj − Atrue

Atrue

)2

+

(
γj − γtrue

γtrue

)2

, (6.3.5)

where {Ai, γi} and {Aj, γj} are elements of the sets Sa and S̄a, respectively. Finally, we

define the empirical distribution function (EDF) as

Fk(a) =
1

k

k∑

n=1

Θ(min χ̄2
a −minχ2

a), (6.3.6)
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the injected values are “closer” (in the chi-squared sense) to one of the elements of Sa
than to any of the elements of S̄a, therefore we can say that the values {Atrue, γtrue} join

the set Sa and lie within the HPR defined in Eq. (6.3.3). Now that we have defined our

EDF, the rest of the analysis mimics van Haasteren & Levin (2013).

For this analysis we simulated 1000 datasets for 6 different scenarios. In all cases we

chose the white noise level to be 100 ns while we chose GWB amplitudes of 1 × 10−15,

2 × 10−15, and 3 × 10−15 for PTAs with both 10 and 15 pulsars with a 5 year baseline.

Figure 25 shows the EDF for the six models outlined above. The thick lines denote a 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

F
1
0
0
0
(a

)
−
a

Figure 25 : Empirical distribution function for 6 scenarios. The thick lines denote a 10 pulsar PTA and

the thin lines denote a 15 pulsar PTA and the solid, dashed and dotted lines denote injected stochastic

GWB amplitudes of 1×10−15, 2×10−15, and 3×10−15, respectively. The solid lines at ±0.052 represent

the value at which we should reject the null-hypothesis that our analysis method is consistent and

unbiased.

pulsar PTA and the thin lines denote a 15 pulsar PTA and the solid, dashed and dotted

lines denote injected stochastic GWB amplitudes of 1× 10−15, 2× 10−15, and 3× 10−15,

respectively. The solid lines at ±0.052 represent the value at which we should reject the

null-hypothesis that our analysis method is consistent and unbiased. Firstly, we note
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Figure 26 : Here we show the scatter of the maximum likelihood values of the GWB amplitude and

spectral index from the Monte-Carlo simulations. From left to right the injected amplitudes are 1×10−15,

2 × 10−15, and 3 × 10−15 with spectral index 13/3 for a 10 pulsar PTA (top row) and 15 pulsar PTA

(bottom row). We can see that nearly all of these distributions display minimal bias.

that for both the 10 and 15 pulsar PTA, our analysis method is consistent for an injected

amplitude of A = 1× 1015. We obtain similar results in the 10 pulsar case for amplitudes

of A = 2× 10−15 and A = 3× 10−15. Here we do see that our method is indeed slightly

biased for these larger amplitudes but the degree of bias is almost negligible. However,

for these same amplitudes in the 15 pulsar case there is a significant bias. Even though

there is a bias present in these scenarios, the EDF does not give information about how

this bias presents itself in the two dimensional parameter space. In Figure 26 we show

the two-dimensional scatter plot of the maximum likelihood parameters from our Monte-

Carlo simulations. It is clear that the bias in our two-dimensional parameter space of

interest is practically very small. In fact the means of the distributions for A and γ for the

10 pulsar case are (1.6, 2.25, 3.14)× 10−15 and (4.17, 4.24, 4.23), respectively and for the

15 pulsar case we obtain (1.56, 2.29, 3.22) × 10−15 and (4.11, 4.12, 4.13), respectively. In

the first row of Figure 26 we show the 10 pulsar case with increasing GWB amplitude and

the second row we show the same for the 15 pulsar case. In the cases where there is a bias
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amplitudes. However, from our experience with the MDC this bias can also present itself

by preferring a slightly higher spectral index and lower amplitude. It should be noted that

even the smallest of the amplitudes tested here are near the upper range of the expected

level of the stochastic GWB (Sesana 2013b) and that the white noise rms of the pulsars

is slightly unrealistic in our current PTA regime. In fact we expect to have maybe five or

six pulsars that time at or below the 100 ns level while we have many others that have

much larger white noise rms. Thus we can conclude that even though our likelihood is

somewhat biased at larger amplitudes (as is expected), for realistic astrophysically likely

stochastic GWBs this method is effectively consistent and unbiased. In fact, in terms of

setting upper limits on the stochastic GWB amplitude, this method is practically identical

to using the full likelihood, while much more computationally efficient.

6.4 Discussion and Conclusions

Here will will briefly discuss future prospects of conducting a simultaneous search for

continuous GWs and the stochastic GWB. We will also compare our work to other recent

efforts to speed up PTA GW data analysis and discuss the importance of our first-order

likelihood method.

6.4.1 Simultaneous Detection of Continuous GWs and a Stochastic GWB

One very important feature of the first order likelihood method is that it can also be

applied to searches for continuous GWs. This will allow us to simultaneously search for

a correlated stochastic background and resolve individual sources that are bright enough

to stand out above such a background. In standard continuous GW searches using PTAs

(Babak & Sesana 2012; Ellis et al. 2012c; Petiteau et al. 2013) the assumption is made

that any detectable single source will be bright enough such that the noise (e.g stochastic

GWB) can be approximated as a gaussian process that is uncorrelated among pulsars.

However, recent work (Ravi et al. 2012) has shown that we are likely to see a few single

sources per frequency bin that will stand out from the typical isotropic stochastic back-

ground, thus in order to resolve the weakest of these it is crucial to simultaneously search
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write down a combined likelihood function assuming a deterministic source of functional

form s(~λ)

p(r|~θ, ~λ) =
1√

det 2πΣ
exp

(
−1

2
(r− s)TΣ−1(r− s)

)
, (6.4.1)

where our noise (including the stochastic background) parameters are ~θ and our single

source parameters are ~λ. Using our first order likelihood approach we can approximate

Eq. (6.4.1) as

ln p(r|~θ, ~λ) =≈ −1

2

[
Tr ln P + (r− s)TP−1(r− s)− (r− s)TP−1ScP

−1(r− s)
]

= −1

2

M∑

α=1

[
Tr lnPα + (rα − sα)TP−1

α (rα − sα)−
M∑

β 6=α
(rα − sα)TP−1

α SαβP
−1
β (rβ − sβ)

]
.

(6.4.2)

As in the stochastic background case, this again will speed up computations because

we only have to invert the individual auto-covariance matrices as opposed to the full

data covariance matrix. Although there have been proposed methods to speed up the

computation of the stochastic likelihood function (van Haasteren 2013), this is not ap-

plicable to continuous sources because it relies on essentially applying a low pass filter

to the data. However, since we expect continuous sources across the entire frequency

band (with higher frequency sources possibly standing out above the background) we

must keep all frequency information. Therefore our first order likelihood approximation

is a viable option when looking to significantly speed up computation time while losing

minimal information about potential GW signals.

As always, to claim a detection we must do some sort of model comparison, be it

a Neyman-Pearson test for Frequentist statistics or an odds ratio or Bayes factor for

Bayesian statistics. For example if we want to assess the likelihood of that a continuous

GW is in our data we want to compute the following Bayes factor

B =
ZCW

Znoise

=

∫ ∫
d~λd~θp(r|~θ, ~λ)p(~λ)p(~θ)∫

d~θp(r|~θ)p(~θ)
, (6.4.3)

where ZCW and Znoise are the evidence for the gravitational CW and noise models, respec-

tively. However, notice that ~θ depends on our stochastic GWB parameters as we treat all

stochastic processes as “noise” in this analysis. If we do not include the GWB parameters
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thus including the GWB stochastic background in both models is crucial to detection

and eventually characterization of a single GW source. We should also mention that the

biases mentioned in section 6.3.3 are not as important if we simply wish to let the noise

parameters vary along with the single source parameters since these noise parameters will

be marginalized over in the end. An exploration of these combined searches will be the

subject of a future paper.

6.4.2 Comparison with Other Work

Recently there have been three studies devoted to making the analysis of PTA data more

computationally efficient. First, van Haasteren (2013, hereafter vH13) have developed

a method dubbed Acceleration By Compression (ABC) to speed up this analysis. The

main point of that work is to write the data in a compressed basis, keeping the minimum

number of basis vectors to maximize the ability to characterize a correlated red signal.

vH13 also makes use of an interpolation scheme to compute the covariance matrix which

further improves the efficiency of the algorithm at the cost of large memory usage. The

aforementioned method has proved to be very efficient and accurate in setting upper limits

on the stochastic GWB and characterizing injected signals, however, since it relies on a

reduced basis that essentially “throws away” high frequency information it is impossible to

obtain a reliable Bayes Factor when comparing models that allow for varying white noise

components. Since our first-order likelihood function makes use of all the information in

the data we can indeed compute reliable Bayes factors and make confident statements

about detection. We note however that the first-order likelihood of this work and the ABC

method of vH13 are complementary. The two methods can in principle be combined for

even greater efficiency.

Most recently there have been two analyses of the IPTA MDC that aim to make the

PTA data analysis more efficient. First, Lentati et al. (2013b) have developed a novel

model-independent method for the estimation of the spectral properties of an isotropic

stochastic GWB. It makes use of a frequency domain approach and is extremely efficient

and results in computational speedups of two to three orders of magnitude over the full
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has proved to be very accurate in characterizing the stochastic GWB. Our first order

likelihood method is indeed complementary to the aforementioned work as it provides a

way to efficiently evaluate the likelihood function in a full time domain analysis which

will be vital for cross-checks of real-life detection candidates.

Finally, Taylor et al. (2012) have implemented the full VHML likelihood function

and have made it more efficient through the use of optimized linear algebra libraries

with multithreading and parallelization resulting in significant speedups in the likelihood

evaluation. However, all of these methods could just as well be applied to the first-

order likelihood which would still be more efficient than the full likelihood by a factor

proportional to the number of pulsars in the array.

This work and recent work have shown that there has indeed been significant progress

on making the likelihood evaluation more efficient for pulsar timing arrays. All of these

methods are complementary and will provide important cross checks for future stochastic

GWB detection candidates.

6.4.3 Summary

In this chapter we have introduced a novel way to speed up the computation of the like-

lihood function for PTAs when searching for a stochastic GWB. This was accomplished

by expanding the likelihood function to first order in the Hellings and Downs correlation

coefficients expected for a stochastic GWB leading to a computational speedup on the

order of the square of the number of pulsars in the PTA. For typical PTAs this results

in a speed-up of a few hundred to about a thousand. We have briefly discussed the im-

plementation of this technique on the first IPTA Mock Data Challenge and showed that

this algorithm performs well in extracting the injected GWB parameters and making a

significant detection through various Bayes factors. Though this is indeed an approxima-

tion to the full likelihood function we have shown through extensive simulations that the

bias introduced in the estimation of GWB parameters is minimal and negligible in many

cases. This was accomplished through an analytical computation of the expectation value
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tions on simulated data sets and through a statistical Monte-Carlo approach based on the

Empirical Distribution Function. Although this work has focused solely on the detection

and characterization of a stochastic GWB, this likelihood function can also be used to

estimate the intrinsic red and white noise parameters of individual pulsars simultaneously

with the GWB parameters.

Appendix 6.A Relationship to VHML likelihood

Making use of Eq. (3.2.7), the likelihood function for the noise can be written as

p(n|~θ) = p(r|~θ, δξbest) =
1√

det(2πΣn)
× exp

(
−1

2
(r−Mδξbest)

TΣ−1
n (r−Mδξbest)

)
.

(6.A.1)

This can be thought of as a conditional pdf, where the values of δξbest are fixed. In van

Haasteren & Levin (2013) it was shown that the marginalized likelihood can be written

as

p(r|~θ) =

∫
dδξ p(r|~θ, δξ) =

exp
[
−1

2
rTGT

(
GTΣnG

)−1
GT r

]

√
det 2πGTΣnG

, (6.A.2)

where G is the matrix constructed from the final (N −Nfit) columns of the matrix U in

the singular value decomposition of the design matrix, M = USVT .

We will now explore the G matrix and the R matrix obtained from the marginalized

and conditional pdfs, respectively. As mentioned above, R can be thought of as an oblique

projection operator that projects the pre-fit residuals into the post-fit residual space,

whereas GT can be thought of a projection operator that projects our data onto the null

space of M , that is, it projects the data into a subspace orthogonal to the timing model fit.

Since R is not generally symmetric and therefore is an oblique projection operator, it does

not have such a simple mathematical interpretation. However, we can recast our problem

in terms of “weighted” residuals then we have the following transformations: r → Wr,

M → WM , and R→ W−1RW , where W is the weighting matrix defined above. In this

case minimizing the chi-squared becomes an unweighted least squares problem and we

obtain the exact same estimates of δξbest and likelihood function as before. In this case
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our weighted data onto the null space of the weighted timing model (WM). However, in

order to compute the likelihood we still have to invert the covariance matrix Σr = RΣnR
T

which is singular. To do this we rely on the pseudo-inverse. The pseudo-inverse of Σr

is easiest defined in terms of its eigen-decomposition Σr = EDET , with E the matrix

of eigenvectors of Σr, and D the diagonal matrix with Dii = λi the eigenvalues of Σr.

It so happens that for a symmetric positive semi-definite matrices like these, the eigen-

decomposition is also the singular value decomposition (SVD). The pseudo-inverse of Σr

is then

Σ−1
r = ED−1DT , (6.A.3)

where the overbar indicates that we are taking a pseudo-inverse and D−1
ii = 1/λi for

λ > 0 and D−1
ii = 0 otherwise. Note that when all the error bars are the same (i.e.

W = σ−1I with σ constant), the matrix GTΣnG has the same eigenvalues as the non-

singular part of RΣnR
T and we have

(RΣnRT )−1 = G(GTΣnG)−1GT . (6.A.4)

Thus we have obtained a very interesting result that in the case of uniform uncertainties,

the conditional pdf making use of a pseudo-inverse is equivalent to the marginalized pdf

making use of the projection matrix GT . However, in general this is not true and the two

methods are indeed different. Although, in many cases the uncertainties are similar on a

majority of the TOAs, thus the two methods will not differ much in practice.
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Chapter 7

Discussion and Conclusions

“We ain’t found shit!”

— Trooper, Spaceballs

7.1 Summary

This dissertation has presented a comprehensive set of tools for the detection and charac-

terization of continuous GWs, a stochastic GW background, and intrinsic noise processes

present in the pulsar timing residuals. Throughout this dissertation, we have stressed

that a more Bayesian approach where all parameters including timing model, noise, and

GW parameters be allowed to vary simultaneously in the search is the most robust. This

is not to say that frequentist methods such as those derived in Chapter 3 are not use-

ful. Since the frequentist statistics are generally much less computationally expensive

they serve as excellent tools to provide valuable information that can then be fed into the

larger Bayesian analysis. Such frequentist tools can also serve as a proxy to a full analysis

when doing a very large set of simulations to assess the overall sensitivity of PTAs.

The work presented in this dissertation has had a significant impact in the field of

GW detection using pulsar timing.

• The noise modeling presented in Chapter 2 has allowed us to study the noise in

pulsar timing data in more detail than in the past. Furthermore, since we include

the (linearized) timing model parameter and noise parameters simultaneously in our

analysis, we take into account any correlations between timing model parameters
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that use the full non-linear timing model and full noise model to construct probabil-

ity distributions of all timing and noise parameters (Lentati et al. 2013a; Vigeland

& Vallisneri 2013). Most recently, and for the first time, the 9-year NANOGrav

data release will use results from this noise analysis when determining the timing

model parameters and uncertainties, leading to more realistic uncertainties on the

timing model parameters.

• The F -statistic approach discussed in Chapter 3 has become a standard tool in

the continuous wave detection toolbox. This technique has been applied to the

5-year NANOGrav data release (Chapter 5) and will be part of the upcoming IPTA

continuous wave analysis. Recently, the idea of maximizing over GW parameters

has been taken a step further in Taylor et al. (2013) where the pulsar induced phase

is numerically maximized/marginalized, which greatly reduces computational time

and the size of the parameter space.

• The Bayesian analysis pipeline presented in Chapter 4 is now the basis for the

current Bayesian continuous pipelines. More importantly, this work has led to the

development of a fully functional and quite general MPI-enabled parallel tempering

MCMC1 that is now implemented in several Bayesian analysis pipelines throughout

NANOGrav and the EPTA.

• The continuous GW analysis presented in Chapter 5 is the first full NANOGrav

collaboration paper on the topic of continuous GWs. Although there is no evidence

for any continuous GWs in this data set, we have presented the most constraining

upper limit on the strength of such GWs to date. This work is also the first that

has carried out a full Bayesian analysis including pulsar timing parameters, GW

parameters and noise parameters simultaneously. Lastly, the methods used for this

analysis will for the basis for the upcoming IPTA continuous GW analysis.

• The first-order likelihood expansion technique of Chapter 6 was one of the first

robust techniques to significantly reduce the computational burden of full PTA

1https://github.com/jellis18/PAL2
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Lentati et al. 2013b) have proven more efficient; however, when all of these methods

are combined, we achieve the greatest computational savings.

7.2 Prospects for Detection of the Stochastic GW Background

A question that is of particular interest is “When do PTAs expect a GW detection?”. This

is, of course a very difficult question to answer as it depends on a slew of uncertainties such

as the overall population and rate of SMBHB mergers, the physics of SMBMB mergers

(it is not entirely GW driven at large orbital separations), the rate and quality of newly

discovered pulsars, the timing stability of our currently timed pulsars, and the availability

of observing facilities. While a clear and concise answer to this question is impossible,

we can make an estimate using reasonable assumptions about the above uncertainties.

Here we will focus on the NANOGrav PTA and only the stochastic GW background. A

complete and more detailed analysis will be published in a future paper, here we simply

summarize our results.

We simulate a NANOGrav timing program through 2025 assuming that for each year

past 2014 we add 4 pulsars to the program (two at the Green Bank Telescope and two at

the Arecibo Radio Telescope) with RMS residuals equal to the median of the currently

timed pulsars at both telescopes (272 ns at Arecibo and 323 ns at GBT). Up until 2014

we use the real measured TOA uncertainties for each pulsar. We simulated many real-

izations of this PTA with different values for the amplitude of the stochastic background

(assuming circular GW driven binaries as in Chapter 1) and compute the upper limit on

the amplitude that would be measured in the absence of any GW background and the

amplitude at which we attain 50 and 90 percent detection probability. As our detection

statistic we use the optimal cross correlation statistic of Anholm et al. (2009) that has

been modified to take into account the timing model via the marginalization approach of

Chapter 2.

Figure 27 shows the results of one set of simulations as described above. The red,

green, and blue curves represent the 95% upper limit in the absence of any GW back-

ground, and the amplitude at which we attain 50% and 90% detection probability. The
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Figure 27 : GW background amplitude vs. year. The red, green, and blue curves represent the 95% upper

limit in the absence of any GW background, and the amplitude at which we attain 50% and 90% detection

probability, respectively. The solid and dashed lines represent 0 ns and 10 ns (at five years) of spin-noise

(i.e., intrinsic red noise) (Shannon & Cordes 2010) in the data. The GW background is assumed to be

from circular GW driven SMBHBs with characteristic strain spectrum derived in Chapter 1. The gray

shaded region is the one-sigma uncertainty on the amplitude of the stochastic GW background from

Sesana (2013b) and the horizontal black line shows the best published upper limit on the amplitude of

the stochastic GW background (Shannon et al. 2013).
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intrinsic red noise) (Shannon & Cordes 2010) in the data. This estimate of red noise is

likely realistic as we see nearly no evidence of red noise in the 5-year NANOGrav data

release. The gray shaded region is the one-sigma uncertainty on the amplitude of the

stochastic GW background from Sesana (2013b) and the horizontal black line shows the

best published upper limit on the amplitude of the stochastic GW background (Shannon

et al. 2013). We see from the figure that in 2010 with 5 years of timing data, the upper

limit from the simulations is nearly A < 7× 10−15 which is excellent agreement with the

results of Demorest et al. (2013). Furthermore, we see that in the most optimistic case

of zero spin-noise we will have either made a detection with 90% confidence or will have

ruled out the entire one-sigma uncertainty region on the GW amplitude by the year 2022.

If there is significant red spin-noise then this level of sensitivity will be delayed by ∼ 2

years and will grow much more slowly afterward due to the fact that our sensitivity will

now only increase with the addition of new pulsars to the array in agreement with the

analytical results of Siemens et al. (2013).

The simulations above address uncertainties in the timing stability of currently timed

pulsars; however, it does not address the uncertainty in the overall stochastic GW back-

ground signal itself. Recently, a significant amount of work has demonstrated that the

environment (i.e., stars and gas) of the SMBHs will play a large role in their evolution

at large orbital separations (Sesana 2013a; McWilliams et al. 2012; Ravi et al. 2014, and

references therein) and will generally lead to a decrease in signal power at low frequencies

compared to the purely circular GW driven case. To address this we have performed a set

of simulations using the same observing strategy described above, but now the GW back-

ground has a power spectrum that is indicative of these dynamic environmental effects.

Figure 28 shows the corresponding upper limits and minimum detectable amplitudes for

three different evolution scenarios for the SMBHBs. The first model assumes circular

GW driven binaries as above (black dotted line in the left side of the figure), the second

model assumes that stellar hardening dominates the binary evolution at large orbital sep-

arations but does not cause any eccentricities (solid red line in left side of figure), and the

third model again assumes evolution driven by stellar hardening but that it now causes
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Figure 28 : Left: Characteristic strain amplitude vs. GW frequency for a range of different SMBHB

evolution scenarios (Sesana 2013a). Particular attention should be focused on the dotted black line that

shows the standard circular GW driven case and the solid and dashed red lines showing an evolutionary

scenario that is dominated by stellar hardening at large orbital separations. The solid and dashed

curves show initial eccentricities of the SMBHBs of 0 and 0.7, respectively. Right: GWB amplitude vs.

time. The simulations are identical to those described above but now using different GW background

distributions. The top right shows the difference between circular GW driven SMBHBs (solid lines) and

stellar driven SMBHBs with 0 eccentricity (dashed lines). The bottom right plot shows the difference

between circular GW driven SMBHBs (solid lines) and stellar driven SMBHBs with 0.7 initial eccentricity

(dashed lines).
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side of the figure). The right side of the figure shows the results in which we see that

a stellar hardening with 0 eccentricity only delays our circular GW driven estimates by

∼ 2 years, whereas a stellar driven evolution resulting in high eccentricities significantly

changes our sensitivity, resulting in delays of ∼ 6 years relative to the circular GW driven

case. Even though there are large uncertainties in the physical effects and efficiency of

stellar hardening, assuming that all binaries have eccentricity equal to 0.7 when they

enter the GW dominated regime is pessimistic and rather unlikely.

We have now addressed some of the uncertainties in the timing stability of pulsars and

the uncertainties in SMBHB evolution, lastly, we turn to uncertainties in the availability of

observing facilities. Here we investigate different scenarios in which we lose access to one

of our two telescopes, either the GBT or Arecibo. In the following simulations we assume

that if we lose access to the GBT then all pulsars timed at the GBT will cease being timed

completely and we will only add two pulsars per year at Arecibo. This is mainly due to

the limited declination range of the Arecibo Radio telescope (−1◦20′ < δ < +38◦02′). In

the case where we lose access to the Arecibo telescope we assume that we could move all

pulsars timed at Arecibo to the GBT at the cost of reducing the observing cadence by

a factor of two for all pulsars. In this case, however; we still assume the addition of 4

pulsars per year, two with the GBT and two others from our IPTA collaborators. Figure

29 again shows our 95% upper limits and minimum detectable amplitudes at 50% and

90% detection probability for both telescopes (solid lines), only GBT (dashed-dotted),

and only Arecibo (dashed). Here we assume that we would lose access to the GBT after

2015 and would lose access to the Arecibo telescope after 2016. We see that since we

are still able to add 4 pulsars per year in the GBT-only case, we do not lose as much

sensitivity as in the only Arecibo case, where we can only add two pulsars per year. In

either case; however, we are still able to either detect the GW background or rule out a

significant area of parameter space by 2025.

In summary, we have shown that although there is a large amount of uncertainty in

the long-term timing stability of pulsars, the exact astrophysics that drive SMBHBs to

merger, and the availability of observing facilities, there is a very good chance that we
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Figure 29 : GW background amplitude vs. year. The observing scenario is described in the text above.

The solid lines represent our usual observing scenario using both telescope and the dash-dotted and

dashed lines represent the scenarios where we lose access to the GBT and Arecibo, respectively.

will either make a detection or will be able to make significant astrophysical statements

by ruling out a large area of parameter space in a ten year time frame.

7.3 Further Work

In order to expand on the work presented in this thesis, several further lines of research

are either planned or ongoing.

Robust noise modeling: As was mentioned in Chapter 2, we currently have a

quite complex noise model that includes separate parameters for different back-

ends/frequency combinations. We also have the ability to model red noise and DM

variations in several different ways. There are many free parameters and different

models to choose from. We could just run with the most complicated noise model

and see which parameters have support from the data but it would be optimal if

we could easily compare different models via the Bayes factor. This noise modeling

will not only help with GW detection efforts but will also yield more reliable timing

model parameter fits and uncertainties. This type of analysis is currently underway
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Combined GW searches: Currently all published GW searches deal specifically with

one kind of signal, either continuous, stochastic or burst. Furthermore, all published

continuous wave and burst analyses assume that the stochastic GW background

will be weak enough to treat the data from each pulsar as independent. A much

more robust and sensitive search pipeline would include all kinds of GW signals

simultaneously. This will make the complexity of such an analysis more difficult

because of the increased dimensionality and the likely correlations between different

kinds of signals if weak. Such methods are currently being developed and are

functional in existing data analysis pipelines2,3.

More efficient sampling techniques: As the number of pulsars in PTAs grow and

noise models and GW models become more complicated, the dimensionality of our

parameter space becomes very large. It is very challenging to efficiently sample such

large parameter spaces and even more difficult to effectively evaluate the Bayesian

evidence which will be required for a confident detection statements. Currently

we make use of parallel tempering and several other convergence aids that greatly

improve our ability to explore the space; however, we still require faster conver-

gence if we ever hope to include the full non-linear timing model and GWs in the

same model (this is the “holy grail” of PTA data analysis). Techniques such as

Guided Hamiltonian sampling (see e.g. Lentati et al. 2013b, and references therin)

or Reverse-Jump MCMC (Green 1995) may prove useful in this regard.

More complicated GW signal models: While current data analysis techniques are

capable of making a confident GW detection, many simplifying assumptions in the

modeling of GWs make these analysis methods sub-optimal when considering these

more complicated models. Specifically, we need to relax two such assumptions; cir-

cular orbits and single sources. Recent work has shown that SMBHBs may have

2https://github.com/jellis18/PAL2
3https://github.com/vhaasteren/piccard
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tributed anisotropically (Ravi et al. 2012). This can be accomplished by modifying

existing codes to include eccentricity using both the earth and the pulsar term.

Inclusion of the pulsar term is crucial for parameter estimation studies as it will

allow one to measure the evolution of the eccentricity over thousands of years, which

in principle could tell us about the stellar and gas content of the SMBHB system

in the past, leading to an increased understanding of galaxy mergers and SMBHB

system dynamics.

Multimessenger Astronomy: While nearly all current efforts within the PTA commu-

nity are focused on the detection of GWs, it is also critical to determine what kind

astrophysical information we can extract from GW observations with PTAs after

the detection has been made. One could perform simulations of advanced PTA

datasets with the best possible GW models to answer questions such as: Is it possi-

ble to use these data to distinguish general relativity from other theories of gravity?

How accurately can we measure intrinsic black hole parameters such as spin and

mass? Can we determine the sky location of SMBHBs accurately enough to do

a targeted electromagnetic (EM) followup? Furthermore, several studies (Sesana

2013a; McWilliams et al. 2012; Ravi et al. 2014, and references therein) have sug-

gested that the characteristic strain spectrum of the stochastic GW background

will deviate from a power-law at low frequencies. A study could be performed to

determine if it is possible to extract any astrophysical information from this spec-

tral break using PTA data. In a similar manner one could test whether or not it

is possible to definitively determine the origin of the stochastic GW background

through observations.

7.4 Closing Remarks

As PTAs continue to add more pulsars and increase timing precision the likelihood of a

GW detection increases. This is a very important time in the history of GW detection

using PTAs as our sensitivity is allowing us to place astrophysically meaningful constraints
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is an exciting time for a data analyst in general as several new data sets are about to

be released with the best timing precision yet attained. With increasing computational

power and more realistic models, we are able to probe deeper than ever before into pulsar

timing data in order to give the most accurate and reliable estimates of pulsar timing

parameters and noise values allowing us to do more important astrophysics. Lastly, as

the IPTA collaboration grows more mature we will have a less restricted flow of ideas

allowing us to use combined datasets and several independent data analysis methods to

make ever increasing confident statements about the presence of GWs in our data.
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